1
|
Cattaneo D, Bavaro DF, Bartoletti M. Potential Role of Therapeutic Drug Monitoring in Preventing Antibiotic-Induced Neuropsychiatric Disorders: A Narrative Review. Ther Drug Monit 2025:00007691-990000000-00355. [PMID: 40403142 DOI: 10.1097/ftd.0000000000001343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/01/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Neuropsychiatric toxicity is a common adverse effect of antibiotics. Advanced age, renal insufficiency, high drug doses, and prolonged therapy are relevant risk factors, suggesting that this event might be caused due to the accumulation of antibiotics in the central nervous system. In this review, the authors aimed to evaluate the potential role of therapeutic drug monitoring in identifying patients at risk of antibiotic-induced neuropsychiatric toxicity. METHODS A MEDLINE PubMed search was conducted for articles published between January 1990 and December 2024, matching the terms "pharmacokinetics" or "therapeutic drug monitoring" with "antibiotics" (including individual drug classes) and "neurotoxicity" (including synonyms). Additional studies were identified from the reference lists of retrieved articles. RESULTS Significant associations have been reported between plasma concentrations of some beta-lactam antibiotics (ceftazidime, cefepime, piperacillin, and meropenem) or linezolid and drug-induced central nervous system adverse events (such as seizures, encephalopathy, peripheral neuropathy, and optic neuropathy). Safety thresholds of plasma concentrations have been proposed for these drugs. CONCLUSIONS Consistent data on the associations between plasma drug concentrations and neuropsychiatric disorders are available only for some antibiotics, whereas for others, there are few and often inconsistent data, hindering the establishment of therapeutic drug monitoring-based safety thresholds for these antibiotics.
Collapse
Affiliation(s)
- Dario Cattaneo
- TDM Service, Unit of Clinical Pathology, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Davide Fiore Bavaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; and
- Division of Infectious Diseases, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; and
- Division of Infectious Diseases, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
2
|
González-Fernández S, Blanco-Agudín N, Rodríguez D, Fernández-Vega I, Merayo-Lloves J, Quirós LM. Silver Nanoparticles: A Versatile Tool Against Infectious and Non-Infectious Diseases. Antibiotics (Basel) 2025; 14:289. [PMID: 40149100 PMCID: PMC11939477 DOI: 10.3390/antibiotics14030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Silver nanoparticles possess remarkable properties that render them highly beneficial for medical applications in both infectious and non-infectious diseases. Among their most renowned attributes is their antimicrobial activity. They have demonstrated efficacy against a wide range of bacteria, fungi, protozoa, and viruses. Additionally, the antitumor and anti-diabetic properties of silver nanoparticles, along with their ability to promote wound healing and their application as biosensors, underscore their therapeutic potential for various non-infectious conditions. As silver nanoparticles are employed for medical purposes, their potential toxicity must be considered. While silver nanoparticles present a promising alternative in the therapeutic domain, further research is needed to elucidate their precise mechanisms of action, optimize their efficacy, and mitigate any potential health risks associated with their use.
Collapse
Affiliation(s)
- Sara González-Fernández
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Nanomaterials and Nanotechnology Research Center (CINN), Consejo Superior de Investigaciones Científicas, 33940 El Entrego, Spain
| | - Noelia Blanco-Agudín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - David Rodríguez
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain;
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
3
|
Apley KD, Johnson SN, Qian J, Munasinghe I, Klaus JR, Patel SM, Woods KE, Banerjee S, Chandler JR, Perera C, Baumlin N, Salathe M, Berkland CJ. Impact of Hydrophobic, Hydrophilic, and Mucus-Binding Motifs on the Therapeutic Potential of Ceftazidime Analogs for Pulmonary Administration. Antibiotics (Basel) 2025; 14:177. [PMID: 40001420 PMCID: PMC11852049 DOI: 10.3390/antibiotics14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The pulmonary administration of antibiotics can be advantageous in treating pulmonary infections by promoting high intrapulmonary drug concentrations with reduced systemic exposure. However, limited benefits have been observed for pulmonary administration versus other administration routes due to its rapid clearance from the lung. Here, the effects of structural modifications on the epithelial permeability and antibacterial potency of a third-generation cephalosporin were investigated to improve the understanding of drug properties that promote intrapulmonary retention and how they may impact efficacy. Methods: Ceftazidime was modified by attaching 18 hydrophobic, hydrophilic, and mucus-binding motifs to the carboxylic acid distant from the beta-lactam by amidation. Epithelial permeability was investigated by drug transport assays using human bronchial epithelial air-liquid interface cultures. Antibacterial potency was determined by microtiter MIC assays with B. pseudomallei, P. aeruginosa, E. coli, and S. aureus. Results: A 40-50% reduction in the transepithelial transport rate was exhibited by two PEGylated ceftazidime analogs (mPEG8- and PEG5-pyrimidin-2-amine-ceftazidime) and n-butyl-ceftazidime. An increase in the transport rate was exhibited by four analogs bearing small and hydrophobic or negatively charged motifs (n-heptane-, phenyl ethyl-, glutamic acid-, and 4-propylthiophenyl boronic acid-ceftazidime). The antibacterial potency was reduced by ≥10-fold for most ceftazidime analogs against B. pseudomallei, P. aeruginosa, and E. coli but was retained by seven ceftazidime analogs primarily bearing hydrophobic motifs against S. aureus. Conclusions: The covalent conjugation of PEGs with MW > 300 Da reduced the epithelial permeability of ceftazidime, but these modifications severely reduced antibacterial activity. To improve the pulmonary retention of antibiotics with low membrane permeability, this work suggests future molecular engineering studies to explore high-molecular-weight prodrug strategies.
Collapse
Affiliation(s)
- Kyle D. Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Stephanie N. Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Jian Qian
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Jennifer R. Klaus
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Srilaxmi M. Patel
- Synthetic Chemical Biology Core Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Kathryn E. Woods
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Samalee Banerjee
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory J. Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
4
|
Varela-Rey I, Bandín-Vilar E, Toja-Camba FJ, Cañizo-Outeiriño A, Cajade-Pascual F, Ortega-Hortas M, Mangas-Sanjuan V, González-Barcia M, Zarra-Ferro I, Mondelo-García C, Fernández-Ferreiro A. Artificial Intelligence and Machine Learning Applications to Pharmacokinetic Modeling and Dose Prediction of Antibiotics: A Scoping Review. Antibiotics (Basel) 2024; 13:1203. [PMID: 39766593 PMCID: PMC11672403 DOI: 10.3390/antibiotics13121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background and Objectives: The use of artificial intelligence (AI) and, in particular, machine learning (ML) techniques is growing rapidly in the healthcare field. Their application in pharmacokinetics is of potential interest due to the need to relate enormous amounts of data and to the more efficient development of new predictive dose models. The development of pharmacokinetic models based on these techniques simplifies the process, reduces time, and allows more factors to be considered than with classical methods, and is therefore of special interest in the pharmacokinetic monitoring of antibiotics. This review aims to describe the studies that use AI, mainly oriented to ML techniques, for dose prediction and analyze their results in comparison with the results obtained by classical methods. Furthermore, in the review, the techniques employed and the metrics to evaluate the precision are described to improve the compression of the results. Methods: A systematic search was carried out in the EMBASE, OVID, and PubMed databases and the results obtained were analyzed in detail. Results: Of the 13 articles selected, 10 were published in the last three years. Vancomycin was monitored in seven and none of the studies were performed on new antibiotics. The most used techniques were XGBoost and neural networks. Comparisons were conducted in most cases against population pharmacokinetic models. Conclusions: AI techniques offer promising results. However, the diversity in terms of the statistical metrics used and the low power of some of the articles make the overall assessment difficult. For now, AI-based ML techniques should be used in addition to classical population pharmacokinetic models in clinical practice.
Collapse
Affiliation(s)
- Iria Varela-Rey
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Enrique Bandín-Vilar
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Francisco José Toja-Camba
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Antonio Cañizo-Outeiriño
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Francisco Cajade-Pascual
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Marcos Ortega-Hortas
- VARPA Group, INIBIC, Research Center CITIC, University of A Coruña, 15071 A Coruña, Spain;
| | - Víctor Mangas-Sanjuan
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain;
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia, 46010 Valencia, Spain
| | - Miguel González-Barcia
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Irene Zarra-Ferro
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Cristina Mondelo-García
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (I.V.-R.); (E.B.-V.); (F.J.T.-C.); (A.C.-O.); (F.C.-P.); (M.G.-B.); (I.Z.-F.)
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Minichmayr IK, Dreesen E, Centanni M, Wang Z, Hoffert Y, Friberg LE, Wicha SG. Model-informed precision dosing: State of the art and future perspectives. Adv Drug Deliv Rev 2024; 215:115421. [PMID: 39159868 DOI: 10.1016/j.addr.2024.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Model-informed precision dosing (MIPD) stands as a significant development in personalized medicine to tailor drug dosing to individual patient characteristics. MIPD moves beyond traditional therapeutic drug monitoring (TDM) by integrating mathematical predictions of dosing and considering patient-specific factors (patient characteristics, drug measurements) as well as different sources of variability. For this purpose, rigorous model qualification is required for the application of MIPD in patients. This review delves into new methods in model selection and validation, also highlighting the role of machine learning in improving MIPD, the utilization of biosensors for real-time monitoring, as well as the potential of models integrating biomarkers for efficacy or toxicity for precision dosing. The clinical evidence of TDM and MIPD is discussed for various medical fields including infection medicine, oncology, transplant medicine, and inflammatory bowel diseases, thereby underscoring the role of pharmacokinetics/pharmacodynamics and specific biomarkers. Further research, particularly randomized clinical trials, is warranted to corroborate the value of MIPD in enhancing patient outcomes and advancing personalized medicine.
Collapse
Affiliation(s)
- I K Minichmayr
- Dept. of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - E Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - M Centanni
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Z Wang
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Y Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - L E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - S G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
6
|
Epperson AB, Awad ME, Gorman M, Loker K, Alfonso NA, Stoneback JW. Clinical practice guidelines for antimicrobial-loaded cements and beads in orthopedic trauma and arthroplasty. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 35:25. [PMID: 39585403 DOI: 10.1007/s00590-024-04132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Implants in orthopedic trauma and arthroplasty surgery establish a milieu conducive to biofilm formation. Antimicrobial-loaded cements (ABCs) and beads have become popular in treating acute and chronic orthopedic surgery-related infections. The growing incidence of antimicrobial resistance has necessitated the exploration of alternative antibiotic medications. This review aims to demonstrate meaningful clinical decision-making guidance for orthopedic surgeons in approaching the management of these complex infections. METHODS This study protocol was conducted following the PRISMA checklist and guidelines of the Cochrane Handbook for Systematic Reviews of Interventions. PubMed, Ovid MEDLINE, Web of Science, and other databases were queried using applicable search terms. Relevant dosing, efficacy, and elution profiles were reviewed and compiled from 74 articles published between 1976 and 2019. First-line and targeted therapies were identified against rare and resistant bacteria. Drug therapies not recommended due to excessive cytotoxicity or poor delivery kinetics were also elucidated. RESULTS This compilation describes thirty-two antibiotics and three antifungals that have successfully managed orthopedic surgery-related infections, including infections with numerous recalcitrant and multidrug-resistant species. Optimized ratios of carrier to antimicrobial are provided for each delivery method. The elution and efficacy profiles of the various antibiotics are described when available. DISCUSSION/CONCLUSION These recommendations offer the most up-to-date and comprehensive practice guidelines for using antimicrobials in cements and beads for treating orthopedic hardware-related infections. With the ever-evolving propensity of bacteria to develop antibiotic resistance, these recommendations are dynamic. Collaboration with medicine, infectious disease, and/or pharmacology teams is recommended to create institutional protocols for antibiotic-eluting implants and close comanagement to ensure efficacy and patient safety.
Collapse
Affiliation(s)
- Aaron B Epperson
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12631 E. 17th Avenue, Mail Stop B202, Aurora, CO, 80045, USA.
| | - Mohamed E Awad
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12631 E. 17th Avenue, Mail Stop B202, Aurora, CO, 80045, USA
| | - Melissa Gorman
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12631 E. 17th Avenue, Mail Stop B202, Aurora, CO, 80045, USA
| | - Kristin Loker
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12631 E. 17th Avenue, Mail Stop B202, Aurora, CO, 80045, USA
| | - Nicholas A Alfonso
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12631 E. 17th Avenue, Mail Stop B202, Aurora, CO, 80045, USA
| | - Jason W Stoneback
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12631 E. 17th Avenue, Mail Stop B202, Aurora, CO, 80045, USA
| |
Collapse
|
7
|
Meesters K, Balbas-Martinez V, Allegaert K, Downes KJ, Michelet R. Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians. Paediatr Drugs 2024; 26:365-379. [PMID: 38755515 DOI: 10.1007/s40272-024-00633-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
The widespread use of drugs for unapproved purposes remains common in children, primarily attributable to practical, ethical, and financial constraints associated with pediatric drug research. Pharmacometrics, the scientific discipline that involves the application of mathematical models to understand and quantify drug effects, holds promise in advancing pediatric pharmacotherapy by expediting drug development, extending applications, and personalizing dosing. In this review, we delineate the principles of pharmacometrics, and explore its clinical applications and prospects. The fundamental aspect of any pharmacometric analysis lies in the selection of appropriate methods for quantifying pharmacokinetics and pharmacodynamics. Population pharmacokinetic modeling is a data-driven method ('top-down' approach) to approximate population-level pharmacokinetic parameters, while identifying factors contributing to inter-individual variability. Model-informed precision dosing is increasingly used to leverage population pharmacokinetic models and patient data, to formulate individualized dosing recommendations. Physiologically based pharmacokinetic models integrate physicochemical drug properties with biological parameters ('bottom-up approach'), and is particularly valuable in situations with limited clinical data, such as early drug development, assessing drug-drug interactions, or adapting dosing for patients with specific comorbidities. The effective implementation of these complex models hinges on strong collaboration between clinicians and pharmacometricians, given the pivotal role of data availability. Promising advancements aimed at improving data availability encompass innovative techniques such as opportunistic sampling, minimally invasive sampling approaches, microdialysis, and in vitro investigations. Additionally, ongoing research efforts to enhance measurement instruments for evaluating pharmacodynamics responses, including biomarkers and clinical scoring systems, are expected to significantly bolster our capacity to understand drug effects in children.
Collapse
Affiliation(s)
- Kevin Meesters
- Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada.
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Kevin J Downes
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
- qPharmetra LLC, Berlin, Germany
| |
Collapse
|
8
|
Novy E, Abdul-Aziz MH, Cheng V, Burrows F, Buscher H, Corley A, Diehl A, Gilder E, Levkovich BJ, McGuinness S, Ordonez J, Parke R, Parker S, Pellegrino V, Reynolds C, Rudham S, Wallis SC, Welch SA, Fraser JF, Shekar K, Roberts JA. Population pharmacokinetics of fluconazole in critically ill patients receiving extracorporeal membrane oxygenation and continuous renal replacement therapy: an ASAP ECMO study. Antimicrob Agents Chemother 2024; 68:e0120123. [PMID: 38063399 PMCID: PMC10777822 DOI: 10.1128/aac.01201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024] Open
Abstract
This multicenter study describes the population pharmacokinetics (PK) of fluconazole in critically ill patients receiving concomitant extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) and includes an evaluation of different fluconazole dosing regimens for achievement of target exposure associated with maximal efficacy. Serial blood samples were obtained from critically ill patients on ECMO and CRRT receiving fluconazole. Total fluconazole concentrations were measured in plasma using a validated chromatographic assay. A population PK model was developed and Monte Carlo dosing simulations were performed using Pmetrics in R. The probability of target attainment (PTA) of various dosing regimens to achieve fluconazole area under the curve to minimal inhibitory concentration ratio (AUC0-24/MIC) >100 was estimated. Eight critically ill patients receiving concomitant ECMO and CRRT were included. A two-compartment model including total body weight as a covariate on clearance adequately described the data. The mean (±standard deviation, SD) clearance and volume of distribution were 2.87 ± 0.63 L/h and 15.90 ± 13.29 L, respectively. Dosing simulations showed that current guidelines (initial loading dose of 12 mg/kg then 6 mg/kg q24h) achieved >90% of PTA for a MIC up to 1 mg/L. None of the tested dosing regimens achieved 90% of PTA for MIC above 2 mg/L. Current fluconazole dosing regimen guidelines achieved >90% PTA only for Candida species with MIC <1 mg/L and thus should be only used for Candida-documented infections in critically ill patients receiving concomitant ECMO and CRRT. Total body weight should be considered for fluconazole dose.
Collapse
Affiliation(s)
- Emmanuel Novy
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Université de Lorraine, SIMPA, Nancy, France
- Departement of anesthesiology, Critical care and peri-operative medicine, University hospital of Nancy, Nancy, France
| | - Mohd H. Abdul-Aziz
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Vesa Cheng
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Fay Burrows
- Department of Pharmacy, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Hergen Buscher
- Department of Intensive Care Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
- University of New South Wales, St Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Amanda Corley
- The Prince Charles Hospital, Critical Care Research Group and Adult Intensive Care Services, Brisbane, Queensland, Australia
| | - Arne Diehl
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Eileen Gilder
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Bianca J. Levkovich
- Experiential Development and Graduate Education and Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Shay McGuinness
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Jenny Ordonez
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Rachael Parke
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
- The University of Auckland, School of Nursing, Auckland, New Zealand
| | - Suzanne Parker
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Vincent Pellegrino
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Claire Reynolds
- Department of Intensive Care Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Sam Rudham
- Department of Intensive Care Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Steven C. Wallis
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Susan A. Welch
- Department of Pharmacy, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - John F. Fraser
- The Prince Charles Hospital, Critical Care Research Group and Adult Intensive Care Services, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Kiran Shekar
- The Prince Charles Hospital, Critical Care Research Group and Adult Intensive Care Services, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Jason A. Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
9
|
Joerger T, Hayes M, Stinson C, Mikhail I, Downes KJ. Incidence of Antimicrobial-Associated Acute Kidney Injury in Children: A Structured Review. Paediatr Drugs 2024; 26:59-70. [PMID: 38093147 PMCID: PMC10983053 DOI: 10.1007/s40272-023-00607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Acute kidney injury (AKI) is a commonly reported adverse effect of administration of antimicrobials. While AKI can be associated with poorer outcomes, there is little information available to understand rates of AKI in children exposed to various antimicrobials. We performed a structured review using the PubMed and Embase databases. Articles were included if they provided an AKI definition in patients who were < 19 years of age receiving an antimicrobial and reported the frequency of AKI. Author-defined AKI rates were calculated for each study and mean pooled estimates for each antimicrobial were derived from among all study participants. Pooled estimates were also derived for those studies that reported AKI according to pRIFLE (pediatric risk, injury, failure, loss, end stage criteria), AKIN (acute kidney injury network), or KDIGO (kidney disease improving global outcomes) creatinine criteria. A total of 122 studies evaluating 28 antimicrobials met the inclusion criteria. Vancomycin was the most commonly studied drug: 11,514 courses across 44 included studies. Among the 27,285 antimicrobial exposures, the overall AKI rate was 13.2% (range 0-42.1% by drug), but the rate of AKI varied widely across studies (range 0-68.8%). Cidofovir (42.1%) and conventional amphotericin B (37.0%) had the highest pooled rates of author-defined AKI. Eighty-one studies used pRIFLE, AKIN, or KDIGO AKI criteria and the pooled rates of AKI were similar to author-defined AKI rates. In conclusion, antimicrobial-associated AKI is reported to occur frequently in children, but the rates of AKI varies widely across studies and drugs. Most published studies examined hospitalized patients and heterogeneity in study populations and in author definitions of AKI are barriers to a comparison of nephrotoxicity risk among antimicrobials in children.
Collapse
Affiliation(s)
- Torsten Joerger
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Molly Hayes
- Center for Healthcare Quality and Analytics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Connor Stinson
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Ibram Mikhail
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Kevin J Downes
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
O'Keeffe JC, Singh N, Slavin MA. Approach to diagnostic evaluation and prevention of invasive fungal disease in patients prior to allogeneic hematopoietic stem cell transplant. Transpl Infect Dis 2023; 25 Suppl 1:e14197. [PMID: 37988269 DOI: 10.1111/tid.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
In recent years, advancements in the treatment landscape for hematological malignancies, such as acute myeloid leukemia and acute lymphoblastic leukemia, have significantly improved disease prognosis and overall survival. However, the treatment landscape is changing and the emergence of targeted oral therapies and immune-based treatments has brought forth new challenges in evaluating and preventing invasive fungal diseases (IFDs). IFD disproportionately affects immunocompromised hosts, particularly those undergoing therapy for acute leukemia and allogeneic hematopoietic stem cell transplant. This review aims to provide a comprehensive overview of the pretransplant workup, identification, and prevention of IFD in patients with hematological malignancy. The pretransplant period offers a critical window to assess each patient's risk factors and implement appropriate prophylactic measures. Risk assessment includes evaluation of disease, host, prior treatments, and environmental factors, allowing a dynamic evaluation that considers disease progression and treatment course. Diagnostic screening, involving various biomarkers and radiological modalities, plays a crucial role in early detection of IFD. Antifungal prophylaxis choice is based on available evidence as well as individual risk assessment, potential for drug-drug interactions, toxicity, and patient adherence. Therapeutic drug monitoring ensures effective antifungal stewardship and optimal treatment. Patient education and counselling are vital in minimizing environmental exposures to fungal pathogens and promoting medication adherence. A well-structured and individualized approach, encompassing risk assessment, prophylaxis, surveillance, and patient education, is essential for effectively preventing IFD in hematological malignancies, ultimately leading to improved patient outcomes and overall survival.
Collapse
Affiliation(s)
- Jessica C O'Keeffe
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Nikhil Singh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Department of Pharmacy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Monica A Slavin
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Ortonobes S, Mujal-Martínez A, de Castro Julve M, González-Sánchez A, Jiménez-Pérez R, Hernández-Ávila M, De Alfonso N, Maye-Pérez I, Valle-Delmás T, Rodríguez-Sánchez A, Pino-García J, Gómez-Valent M. Successful Integration of Clinical Pharmacists in an OPAT Program: A Real-Life Multidisciplinary Circuit. Antibiotics (Basel) 2022; 11:1124. [PMID: 36009993 PMCID: PMC9404975 DOI: 10.3390/antibiotics11081124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Outpatient parenteral antimicrobial therapy (OPAT) programs encompass a range of healthcare processes aiming to treat infections at home, with the preferential use of the intravenous route. Although several barriers arise during the implementation of OPAT circuits, recent cumulative data have supported the effectiveness of these programs, demonstrating their application in a safe and cost-effective manner. Given that OPAT is evolving towards treating patients with higher complexity, a multidisciplinary team including physicians, pharmacists, and nursing staff should lead the program. The professionals involved require previous experience in infectious diseases treatment as well as in outpatient healthcare and self-administration. As we describe here, clinical pharmacists exert a key role in OPAT multidisciplinary teams. Their intervention is essential to optimize antimicrobial prescriptions through their participation in stewardship programs as well as to closely follow patients from a pharmacotherapeutic perspective. Moreover, pharmacists provide specialized counseling on antimicrobial treatment technical compounding. In fact, OPAT elaboration in sterile environments and pharmacy department clean rooms increases OPAT stability and safety, enhancing the quality of the program. In summary, building multidisciplinary teams with the involvement of clinical pharmacists improves the management of home-treated infections, promoting a safe self-administration and increasing OPAT patients' quality of life.
Collapse
Affiliation(s)
- Sara Ortonobes
- Pharmacy Department, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
- Parc Taulí Research and Innovation Institute Foundation (I3PT), 08028 Sabadell, Barcelona, Spain
| | - Abel Mujal-Martínez
- Parc Taulí Research and Innovation Institute Foundation (I3PT), 08028 Sabadell, Barcelona, Spain
- Hospital at Home Unit, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - María de Castro Julve
- Pharmacy Department, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
- Parc Taulí Research and Innovation Institute Foundation (I3PT), 08028 Sabadell, Barcelona, Spain
| | - Alba González-Sánchez
- Hospital at Home Unit, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - Rafael Jiménez-Pérez
- Hospital at Home Unit, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - Manuel Hernández-Ávila
- Hospital at Home Unit, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - Natalia De Alfonso
- Hospital at Home Unit, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - Ingrid Maye-Pérez
- Hospital at Home Unit, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - Teresa Valle-Delmás
- Hospital at Home Unit, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - Alba Rodríguez-Sánchez
- Hospital at Home Unit, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - Jessica Pino-García
- Pharmacy Department, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
| | - Mònica Gómez-Valent
- Pharmacy Department, Consorci Corporació Sanitària Parc Taulí, Universitat Autònoma de Barcelona, 08208 Sabadell, Barcelona, Spain
- Parc Taulí Research and Innovation Institute Foundation (I3PT), 08028 Sabadell, Barcelona, Spain
| |
Collapse
|
12
|
Abdul-Aziz MH, Brady K, Cotta MO, Roberts JA. Therapeutic Drug Monitoring of Antibiotics: Defining the Therapeutic Range. Ther Drug Monit 2022; 44:19-31. [PMID: 34750338 DOI: 10.1097/ftd.0000000000000940] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE In the present narrative review, the authors aimed to discuss the relationship between the pharmacokinetic/pharmacodynamic (PK/PD) of antibiotics and clinical response (including efficacy and toxicity). In addition, this review describes how this relationship can be applied to define the therapeutic range of a particular antibiotic (or antibiotic class) for therapeutic drug monitoring (TDM). METHODS Relevant clinical studies that examined the relationship between PK/PD of antibiotics and clinical response (efficacy and response) were reviewed. The review (performed for studies published in English up to September 2021) assessed only commonly used antibiotics (or antibiotic classes), including aminoglycosides, beta-lactam antibiotics, daptomycin, fluoroquinolones, glycopeptides (teicoplanin and vancomycin), and linezolid. The best currently available evidence was used to define the therapeutic range for these antibiotics. RESULTS The therapeutic range associated with maximal clinical efficacy and minimal toxicity is available for commonly used antibiotics, and these values can be implemented when TDM for antibiotics is performed. Additional data are needed to clarify the relationship between PK/PD indices and the development of antibiotic resistance. CONCLUSIONS TDM should only be regarded as a means to achieve the main goal of providing safe and effective antibiotic therapy for all patients. The next critical step is to define exposures that can prevent the development of antibiotic resistance and include these exposures as therapeutic drug monitoring targets.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kara Brady
- Adult Intensive Care Unit and Pharmacy, The Prince Charles Hospital, Brisbane, Australia
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
13
|
Advances in clinical antibiotic testing. Adv Clin Chem 2022; 110:73-116. [DOI: 10.1016/bs.acc.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|