1
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
3
|
Ma X, Peddibhotla S, Zheng Y, Pan S, Mehta A, Moroni DG, Chen QY, Ma X, Burnett JC, Malany S, Sangaralingham SJ. Discovery of small molecule guanylyl cyclase B receptor positive allosteric modulators. PNAS NEXUS 2024; 3:pgae225. [PMID: 38894878 PMCID: PMC11185183 DOI: 10.1093/pnasnexus/pgae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Myocardial fibrosis is a pathological hallmark of cardiovascular disease (CVD), and excessive fibrosis can lead to new-onset heart failure and increased mortality. Currently, pharmacological therapies for myocardial fibrosis are limited, highlighting the need for novel therapeutic approaches. The particulate guanylyl cyclase B (GC-B) receptor possesses beneficial antifibrotic actions through the binding of its natural ligand C-type natriuretic peptide (CNP) and the generation of the intracellular second messenger, cyclic guanosine 3',5'-monophosphate (cGMP). These actions include the suppression of fibroblast proliferation and reduction in collagen synthesis. With its abundant expression on fibroblasts, the GC-B receptor has emerged as a key molecular target for innovative CVD therapeutics. However, small molecules that can bind and potentiate the GC-B/cGMP pathway have yet to be discovered. From a cell-based high-throughput screening initiative of the NIH Molecular Libraries Small Molecule Repository and hit-to-lead evolution based on a series of structure-activity relationships, we report the successful discovery of MCUF-42, a GC-B-targeted small molecule that acts as a positive allosteric modulator (PAM). Studies herein support MCUF-42's ability to enhance the binding affinity between GC-B and CNP. Moreover, MCUF-42 potentiated cGMP levels induced by CNP in human cardiac fibroblasts (HCFs) and notably also enhanced the inhibitory effect of CNP on HCF proliferation. Together, our findings highlight that MCUF-42 is a small molecule that can modulate the GC-B/cGMP signaling pathway, potentially enhancing the antifibrotic actions of CNP. Thus, these data underscore the continued development of GC-B small molecule PAMs as a novel therapeutic strategy for targeting cardiac fibrosis and CVD.
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alka Mehta
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA
| | - Dante G Moroni
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoyu Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Udell JA, Armstrong DWJ. Targeting the Natriuretic Peptide System to Improve Outcomes: PARADISE Lost or Found. J Am Coll Cardiol 2024; 83:915-917. [PMID: 38418005 DOI: 10.1016/j.jacc.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 03/01/2024]
Affiliation(s)
- Jacob A Udell
- Women's College Hospital and Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - David W J Armstrong
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Yang Q, Yang Q, Wu X, Zheng R, Lin H, Wang S, Joseph J, Sun YV, Li M, Wang T, Zhao Z, Xu M, Lu J, Chen Y, Ning G, Wang W, Bi Y, Zheng J, Xu Y. Sex-stratified genome-wide association and transcriptome-wide Mendelian randomization studies reveal drug targets of heart failure. Cell Rep Med 2024; 5:101382. [PMID: 38237596 PMCID: PMC10897518 DOI: 10.1016/j.xcrm.2023.101382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
The prevalence of heart failure (HF) subtypes, which are classified by left ventricular ejection fraction (LVEF), demonstrate significant sex differences. Here, we perform sex-stratified genome-wide association studies (GWASs) on LVEF and transcriptome-wide Mendelian randomization (MR) on LVEF, all-cause HF, HF with reduced ejection fraction (HFrEF), and HF with preserved ejection fraction (HFpEF). The sex-stratified GWASs of LVEF identified three sex-specific loci that were exclusively detected in the sex-stratified GWASs. Three drug target genes show sex-differential effects on HF/HFrEF via influencing LVEF, with NPR2 as the target gene for the HF drug Cenderitide under phase 2 clinical trial. Our study highlights the importance of considering sex-differential genetic effects in sex-balanced diseases such as HF and emphasizes the value of sex-stratified GWASs and MR in identifying putative genetic variants, causal genes, and candidate drug targets for HF, which is not identifiable using a sex-combined strategy.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Yang
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jacob Joseph
- Cardiology Section, VA Providence Healthcare System, 830 Chalkstone Avenue, Providence, RI 02908, USA; Department of Medicine, Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Yan V Sun
- Emory University Rollins School of Public Health, Atlanta, GA, USA; Atlanta VA Health Care System, Decatur, GA, USA
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Andresen H, Pérez‐Ternero C, Robinson J, Dickey DM, Hobbs AJ, Potter LR, Levy FO, Cataliotti A, Moltzau LR. Novel enhancers of guanylyl cyclase-A activity acting via allosteric modulation. Br J Pharmacol 2023; 180:3254-3270. [PMID: 37522273 PMCID: PMC10952227 DOI: 10.1111/bph.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Guanylyl cyclase-A (GC-A), activated by endogenous atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), plays an important role in the regulation of cardiovascular and renal homeostasis and is an attractive drug target. Even though small molecule modulators allow oral administration and longer half-life, drug targeting of GC-A has so far been limited to peptides. Thus, in this study we aimed to develop small molecular activators of GC-A. EXPERIMENTAL APPROACH Hits were identified through high-throughput screening and optimized by in silico design. Cyclic GMP was measured in QBIHEK293A cells expressing GC-A, GC-B or chimerae of the two receptors using AlphaScreen technology. Binding assays were performed in membrane preparations or whole cells using 125 I-ANP. Vasorelaxation was measured in aortic rings isolated from Wistar rats. KEY RESULTS We have identified small molecular allosteric enhancers of GC-A, which enhanced ANP or BNP effects in cellular systems and ANP-induced vasorelaxation in rat aortic rings. The mechanism of action appears novel and not mediated through previously described allosteric binding sites. In addition, the selectivity and activity depend on a single amino acid residue that differs between the two similar receptors GC-A and GC-B. CONCLUSION AND IMPLICATIONS We describe a novel allosteric binding site on GC-A, which can be targeted by small molecules to enhance ANP and BNP effects. These compounds will be valuable tools in further development and proof-of-concept of GC-A enhancement for the potential use in cardiovascular therapy.
Collapse
Affiliation(s)
- Henriette Andresen
- Department of Pharmacology, Institute of Clinical MedicineUniversity of Oslo and Oslo University HospitalOsloNorway
- Institute for Experimental Medical ResearchUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Cristina Pérez‐Ternero
- William Harvey Research Institute, Barts & The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Jerid Robinson
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Deborah M. Dickey
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Lincoln R. Potter
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Finn Olav Levy
- Department of Pharmacology, Institute of Clinical MedicineUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Alessandro Cataliotti
- Institute for Experimental Medical ResearchUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Lise Román Moltzau
- Department of Pharmacology, Institute of Clinical MedicineUniversity of Oslo and Oslo University HospitalOsloNorway
| |
Collapse
|
7
|
Messadi E. Snake Venom Components as Therapeutic Drugs in Ischemic Heart Disease. Biomolecules 2023; 13:1539. [PMID: 37892221 PMCID: PMC10605524 DOI: 10.3390/biom13101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ischemic heart disease (IHD), especially myocardial infarction (MI), is a leading cause of death worldwide. Although coronary reperfusion is the most straightforward treatment for limiting the MI size, it has nevertheless been shown to exacerbate ischemic myocardial injury. Therefore, identifying and developing therapeutic strategies to treat IHD is a major medical challenge. Snake venoms contain biologically active proteins and peptides that are of major interest for pharmacological applications in the cardiovascular system (CVS). This has led to their use for the development and design of new drugs, such as the first-in-class angiotensin-converting enzyme inhibitor captopril, developed from a peptide present in Bothrops jararaca snake venom. This review discusses the potential usefulness of snake venom toxins for developing effective treatments against IHD and related diseases such as hypertension and atherosclerosis. It describes their biological effects at the molecular scale, their mechanisms of action according to their different pharmacological properties, as well as their subsequent molecular pathways and therapeutic targets. The molecules reported here have either been approved for human medical use and are currently available on the drug market or are still in the clinical or preclinical developmental stages. The information summarized here may be useful in providing insights into the development of future snake venom-derived drugs.
Collapse
Affiliation(s)
- Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
8
|
Ajay A, Rasoul D, Abdullah A, Lee Wei En B, Mashida K, Al-Munaer M, Ajay H, Duvva D, Mathew J, Adenaya A, Lip GYH, Sankaranarayanan R. Augmentation of natriuretic peptide (NP) receptor A and B (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) signalling as a therapeutic strategy in heart failure. Expert Opin Investig Drugs 2023; 32:1157-1170. [PMID: 38032188 DOI: 10.1080/13543784.2023.2290064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Heart failure is a complex, debilitating condition and despite advances in treatment, it remains a significant cause of morbidity and mortality worldwide. Therefore, the need for alternative treatment strategies is essential. In this review, we explore the therapeutic strategies of augmenting natriuretic peptide receptors (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) in heart failure. AREAS COVERED We aim to provide an overview of the evidence of preclinical and clinical studies on novel heart failure treatment strategies. Papers collected in this review have been filtered and screened following PubMed searches. This includes epigenetics, modulating enzyme activity in natriuretic peptide (NP) synthesis, gene therapy, modulation of downstream signaling by augmenting soluble guanylate cyclase (sGC) and phosphodiesterase (PDE) inhibition, nitrates, c-GMP-dependent protein kinase, synthetic and designer NP and RNA therapy. EXPERT OPINION The novel treatment strategies mentioned above have shown great potential, however, large randomized controlled trials are still lacking. The biggest challenge is translating the results seen in preclinical trials into clinical trials. We recommend a multi-disciplinary team approach with cardiologists, geneticist, pharmacologists, bioengineers, researchers, regulators, and patients to improve heart failure outcomes. Future management can involve telemedicine, remote monitoring, and artificial intelligence to optimize patient care.
Collapse
Affiliation(s)
- Ashwin Ajay
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Debar Rasoul
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Alend Abdullah
- General Medicine, The Dudley Group NHS Foundation Trust Dudley, Dudley, United Kingdom
| | - Benjamin Lee Wei En
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Knievel Mashida
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| | | | - Hanan Ajay
- General Medicine, Southport and Ormskirk Hospital NHS Trust, Southport, United Kingdom
| | - Dileep Duvva
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Jean Mathew
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Adeoye Adenaya
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Cedar House, University of Liverpool, Liverpool, United Kingdom
- Cardiology Department, Liverpool Heart & Chest Hospital NHS Trust, Liverpool, United Kingdom
- Cardiology Department, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rajiv Sankaranarayanan
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Vink S, Akondi KB, Jin J, Poth K, Torres AM, Kuchel PW, Burke SL, Head GA, Alewood PF. Taipan Natriuretic Peptides Are Potent and Selective Agonists for the Natriuretic Peptide Receptor A. Molecules 2023; 28:molecules28073063. [PMID: 37049825 PMCID: PMC10095932 DOI: 10.3390/molecules28073063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. We now describe several taipan (Oxyuranus microlepidotus) natriuretic peptides TNPa-e which stimulated cGMP production through the natriuretic peptide receptor A (NPR-A) with higher potencies for the rat NPR-A (rNPR-A) over human NPR-A (hNPR-A). TNPc and TNPd were the most potent, demonstrating 100- and 560-fold selectivity for rNPR-A over hNPR-A. In vivo studies found that TNPc decreased diastolic and systolic blood pressure (BP) and increased heart rate (HR) in conscious normotensive rabbits, to a level that was similar to that of human atrial natriuretic peptide (hANP). TNPc also enhanced the bradycardia due to cardiac afferent stimulation (Bezold-Jarisch reflex). This indicated that TNPc possesses the ability to lower blood pressure and facilitate cardiac vagal afferent reflexes but unlike hANP does not produce tachycardia. The 3-dimensional structure of TNPc was well defined within the pharmacophoric disulfide ring, displaying two turn-like regions (RMSD = 1.15 Å). Further, its much greater biological stability together with its selectivity and potency will enhance its usefulness as a biological tool.
Collapse
Affiliation(s)
- Simone Vink
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Kalyana Bharati Akondi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jean Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Kim Poth
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Allan M Torres
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith 2759, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Sandra L Burke
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
10
|
Ang WF, Koh CY, Kini RM. From Snake Venoms to Therapeutics: A Focus on Natriuretic Peptides. Pharmaceuticals (Basel) 2022; 15:ph15091153. [PMID: 36145374 PMCID: PMC9502559 DOI: 10.3390/ph15091153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Snake venom is a cocktail of multifunctional biomolecules that has evolved with the purpose of capturing prey and for defense. These biomolecules are classified into different classes based on their functions. They include three-finger toxins, natriuretic peptides, phospholipases and metalloproteinases. The focus for this review is on the natriuretic peptide (NP), which is an active component that can be isolated from the venoms of vipers and mambas. In these venoms, NPs contribute to the lowering of blood pressure, causing a rapid loss of consciousness in the prey such that its mobility is reduced, paralyzing the prey, and often death follows. Over the past 30 years since the discovery of the first NP in the venom of the green mamba, venom NPs have shown potential in the development of drug therapy for heart failure. Venom NPs have long half-lives, different pharmacological profiles, and may also possess different functions in comparison to the mammalian NPs. Understanding their mechanisms of action provides the strategies needed to develop new NPs for treatment of heart failure. This review summarizes the venom NPs that have been identified over the years and how they can be useful in drug development.
Collapse
Affiliation(s)
- Wei Fong Ang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
- Correspondence: (C.Y.K.); (R.M.K.); Tel.: +65-6601-1387 (C.Y.K.); +65-6516-5235 (R.M.K.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0614, USA
- Correspondence: (C.Y.K.); (R.M.K.); Tel.: +65-6601-1387 (C.Y.K.); +65-6516-5235 (R.M.K.)
| |
Collapse
|
11
|
Sangaralingham SJ, Kuhn M, Cannone V, Chen HH, Burnett JC. Natriuretic peptide pathways in heart failure: further therapeutic possibilities. Cardiovasc Res 2022; 118:3416-3433. [PMID: 36004816 PMCID: PMC9897690 DOI: 10.1093/cvr/cvac125] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the heart as an endocrine organ resulted in a remarkable recognition of the natriuretic peptide system (NPS). Specifically, research has established the production of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) from the heart, which exert pleiotropic cardiovascular, endocrine, renal, and metabolic actions via the particulate guanylyl cyclase A receptor (GC-A) and the second messenger, cGMP. C-type natriuretic peptide (CNP) is produced in the endothelium and kidney and mediates important protective auto/paracrine actions via GC-B and cGMP. These actions, in part, participate in the efficacy of sacubitril/valsartan in heart failure (HF) due to the augmentation of the NPS. Here, we will review important insights into the biology of the NPS, the role of precision medicine, and focus on the phenotypes of human genetic variants of ANP and BNP in the general population and the relevance to HF. We will also provide an update of the existence of NP deficiency states, including in HF, which provide the rationale for further therapeutics for the NPS. Finally, we will review the field of peptide engineering and the development of novel designer NPs for the treatment of HF. Notably, the recent discovery of a first-in-class small molecule GC-A enhancer, which is orally deliverable, will be highlighted. These innovative designer NPs and small molecule possess enhanced and novel properties for the treatment of HF and cardiovascular diseases.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic 200 1st St SW, Rochester MN 55905, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Wuerzburg, Roentgenring 9, D-97070 Wuerzburg, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - John C Burnett
- Corresponding author. Tel: 507 284-4343; fax: 507 266-4710; E-mail:
| |
Collapse
|
12
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
13
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Natriuretic Peptide-Based Novel Therapeutics: Long Journeys of Drug Developments Optimized for Disease States. BIOLOGY 2022; 11:biology11060859. [PMID: 35741380 PMCID: PMC9219923 DOI: 10.3390/biology11060859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Natriuretic peptides are endogenous hormones produced in the heart and vascular endothelium, and they enable cardiorenal protective actions or bone growth via cGMP stimulation through their receptor guanylyl cyclase receptor A or B. To optimize the drug for each disease state, we must consider drug metabolism, delivery systems, and target receptor(s). This review summarizes attempts to develop novel natriuretic peptide-based therapeutics, including novel designer natriuretic peptides and oral drugs to enhance endogenous natriuretic peptides. We introduce some therapeutics that have been successful in clinical practice, as well as the prospective drug developments in the natriuretic peptide system for disease states. Abstract The field of natriuretic peptides (NPs) as an endocrine hormone has been developing since 1979. There are three peptides in humans: atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which bind to the guanylyl cyclase-A (GC-A) receptor (also called natriuretic peptide receptor-A (NPR-A)), and C-type natriuretic peptide (CNP), which binds to the GC-B receptor (also called the NPR-B) and then synthesizes intracellular cGMP. GC-A receptor stimulation has natriuretic, vasodilatory, cardiorenal protective and anti-renin–angiotensin–aldosterone system actions, and GC-B receptor stimulation can suppress myocardial fibrosis and can activate bone growth before epiphyseal plate closure. These physiological effects are useful as therapeutics for some disease states, such as heart failure, hypertension, and dwarfism. To optimize the therapeutics for each disease state, we must consider drug metabolism, delivery systems, and target receptor(s). We review the cardiac NP system; new designer NPs, such as modified/combined NPs and modified peptides that can bind to not only NP receptors but receptors for other systems; and oral drugs that enhance endogenous NP activity. Finally, we discuss prospective drug discoveries and the development of novel NP therapeutics.
Collapse
|
15
|
Molecular Mechanism of Induction of Bone Growth by the C-Type Natriuretic Peptide. Int J Mol Sci 2022; 23:ijms23115916. [PMID: 35682595 PMCID: PMC9180634 DOI: 10.3390/ijms23115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
The skeletal development process in the body occurs through sequential cellular and molecular processes called endochondral ossification. Endochondral ossification occurs in the growth plate where chondrocytes differentiate from resting, proliferative, hypertrophic to calcified zones. Natriuretic peptides (NPTs) are peptide hormones with multiple functions, including regulation of blood pressure, water-mineral balance, and many metabolic processes. NPTs secreted from the heart activate different tissues and organs, working in a paracrine or autocrine manner. One of the natriuretic peptides, C-type natriuretic peptide-, induces bone growth through several mechanisms. This review will summarize the knowledge, including the newest discoveries, of the mechanism of CNP activation in bone growth.
Collapse
|
16
|
Gidlöf O. Toward a New Paradigm for Targeted Natriuretic Peptide Enhancement in Heart Failure. Front Physiol 2021; 12:650124. [PMID: 34721050 PMCID: PMC8548580 DOI: 10.3389/fphys.2021.650124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The natriuretic peptide system (NPS) plays a fundamental role in maintaining cardiorenal homeostasis, and its potent filling pressure-regulated diuretic and vasodilatory effects constitute a beneficial compensatory mechanism in heart failure (HF). Leveraging the NPS for therapeutic benefit in HF has been the subject of intense investigation during the last three decades and has ultimately reached widespread clinical use in the form of angiotensin receptor-neprilysin inhibition (ARNi). NPS enhancement via ARNi confers beneficial effects on mortality and hospitalization in HF, but inhibition of neprilysin leads to the accumulation of a number of other vasoactive peptides in the circulation, often resulting in hypotension and raising potential concerns over long-term adverse effects. Moreover, ARNi is less effective in the large group of HF patients with preserved ejection fraction. Alternative approaches for therapeutic augmentation of the NPS with increased specificity and efficacy are therefore warranted, and are now becoming feasible particularly with recent development of RNA therapeutics. In this review, the current state-of-the-art in terms of experimental and clinical strategies for NPS augmentation and their implementation will be reviewed and discussed.
Collapse
Affiliation(s)
- Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Abstract
Acute decompensated heart failure (ADHF) is one of the leading admission diagnoses worldwide, yet it is an entity with incompletely understood pathophysiology and limited therapeutic options. Patients admitted for ADHF have high in-hospital morbidity and mortality, as well as frequent rehospitalizations and subsequent cardiovascular death. This devastating clinical course is partly due to suboptimal medical management of ADHF with persistent congestion upon hospital discharge and inadequate predischarge initiation of life-saving guideline-directed therapies. While new drugs for the treatment of chronic HF continue to be approved, there has been no new therapy approved for ADHF in decades. This review will focus on the current limited understanding of ADHF pathophysiology, possible therapeutic targets, and current limitations in expanding available therapies in light of the unmet need among these high-risk patients.
Collapse
Affiliation(s)
- Joyce N. Njoroge
- Division of Cardiology, School of Medicine, University of California San Francisco (J.N.N., J.R.T.), San Francisco, CA
| | - John R. Teerlink
- Division of Cardiology, School of Medicine, University of California San Francisco (J.N.N., J.R.T.), San Francisco, CA
- Section of Cardiology, San Francisco Veterans Affairs Medical Center (J.R.T.), San Francisco, CA
| |
Collapse
|
18
|
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
20
|
Castro-Torres Y, Katholi RE. Recently Approved and Under Investigation Drugs for Treating Patients with Heart Failure. Curr Cardiol Rev 2020; 16:202-211. [PMID: 32351188 PMCID: PMC7536816 DOI: 10.2174/1573403x14666180702151626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Heart Failure (HF) represents a leading cause of morbidity and mortality worldwide. Despite the recent advances in the treatment of this condition, patients´ prognosis remains unfavorable in most cases. Sacubitril/valsartan and ivabradine have been recently approved to improve clinical outcomes in patients with HF with reduced ejection fraction. Drugs under investigation for treating patients with HF encompass many novel mechanisms including vasoactive peptides, blocking inflammatory- mediators, natriuretic peptides, selective non-steroidal mineralocorticoid-receptor antagonists, myocardial β3 adrenoreceptor agonists, inhibiting the cytochrome C/cardiolipin peroxidase complex, neuregulin-1/ErbB signaling and inhibiting late inward sodium current. The aim of this manuscript is to review the main drugs under investigation for the treatment of patients with HF and give perspectives for their implementation into clinical practice.
Collapse
Affiliation(s)
- Yaniel Castro-Torres
- Servicio de Cardiología, Hospital Universitario Celestino Hernández Robau, Santa Clara, Villa Clara, Cuba
| | - Richard E Katholi
- Department of Pharmacology, Southern Illinois School of Medicine, Springfield, IL 62702, United States
| |
Collapse
|
21
|
Abstract
Investigations into the mixed muscle-secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones - the natriuretic peptides - referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.
Collapse
|
22
|
Savira F, Magaye R, Liew D, Reid C, Kelly DJ, Kompa AR, Sangaralingham SJ, Burnett JC, Kaye D, Wang BH. Cardiorenal syndrome: Multi-organ dysfunction involving the heart, kidney and vasculature. Br J Pharmacol 2020; 177:2906-2922. [PMID: 32250449 DOI: 10.1111/bph.15065] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a multi-organ disease, encompassing heart, kidney and vascular system dysfunction. CRS is a worldwide problem, with high morbidity, mortality, and inflicts a significant burden on the health care system. The pathophysiology is complex, involving interactions between neurohormones, inflammatory processes, oxidative stress and metabolic derangements. Therapies remain inadequate, mainly comprising symptomatic care with minimal prospect of full recovery. Challenges include limiting the contradictory effects of multi-organ targeted drug prescriptions and continuous monitoring of volume overload. Novel strategies such as multi-organ transplantation and innovative dialysis modalities have been considered but lack evidence in the CRS context. The adjunct use of pharmaceuticals targeting alternative pathways showing positive results in preclinical models also warrants further validation in the clinic. In recent years, studies have identified the involvement of gut dysbiosis, uraemic toxin accumulation, sphingolipid imbalance and other unconventional contributors, which has encouraged a shift in the paradigm of CRS therapy.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ruth Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Darren J Kelly
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Andrew R Kompa
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, New York, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, New York, USA
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Abstract
Snake and spider venoms have been developed by nature as a defense mechanism against predators or to immobilize their prey by blocking the cardiovascular, respiratory, and/or nervous systems. Consequently, predators are deterred from approaching their prey by painful sensations. At a molecular level, the targeted physiological systems are blocked or stimulated by peptide toxins which, once injected into the body, modulate, though not exclusively, important cell membrane ion channels and receptors. Millions of years of constant evolution have led to the evolvement of complex venom libraries of optimized protein toxins, making them more potent, more selective, resistant to proteases, less immunogenic, and improved in terms of pharmacokinetic (PK) properties. The resulting advantage is that they induce long-term and potent pharmacodynamic (PD) effects toward unique molecular targets of therapeutic importance such as coagulation cascade proteins, receptors, and ionic channels. This optimization process has been enabled by the diversification of peptide sequences (mainly by gene duplication) and an upscaling of the complexity of toxin peptide scaffold structures, through implementation of multiple disulfide bridges and sequence-active motif diversification, leading to a wide diversity of chemical structures. This combination of pharmaceutical properties has made venom toxins valuable both as pharmacological tools and as leads for drug development. These highly tunable molecules can be tailored to achieve desirable biocompatibility and biodegradability with simultaneously selective and potent therapeutic effects. This brief overview provides basic definitions, rules, and methodologies and describes successful examples of a few drugs developed from snake toxins that are currently used in the clinic for therapy of several diseases as well as new molecular entities in clinical development based on spider-venom-derived peptide toxins.
Collapse
|
24
|
Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu Rev Anim Biosci 2019; 8:91-116. [PMID: 31702940 DOI: 10.1146/annurev-animal-021419-083626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Snake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure-function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes. In this review, we discuss examples of how the major venom protein superfamilies have diversified, as well as how newer technologies in the omics fields, such as genomics, transcriptomics, and proteomics, can be used to characterize both known and unknown toxins.Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as therapeutic and diagnostic agents, and successful examples of toxin applications in these areas are also reviewed. With the current rapid pace of technology, snake venom research and its applications will only continue to expand.
Collapse
Affiliation(s)
- Cassandra M Modahl
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Rajeev Kungur Brahma
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077;
| | - Narumi Shioi
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , , .,Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan;
| | - R Manjunatha Kini
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| |
Collapse
|
25
|
Péterfi O, Boda F, Szabó Z, Ferencz E, Bába L. Hypotensive Snake Venom Components-A Mini-Review. Molecules 2019; 24:E2778. [PMID: 31370142 PMCID: PMC6695636 DOI: 10.3390/molecules24152778] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Hypertension is considered a major public health issue due to its high prevalence and subsequent risk of cardiovascular and kidney diseases. Thus, the search for new antihypertensive compounds remains of great interest. Snake venoms provide an abundant source of lead molecules that affect the cardiovascular system, which makes them prominent from a pharmaceutical perspective. Such snake venom components include bradykinin potentiating peptides (proline-rich oligopeptides), natriuretic peptides, phospholipases A2, serine-proteases and vascular endothelial growth factors. Some heparin binding hypotensive factors, three-finger toxins and 5' nucleotidases can also exert blood pressure lowering activity. Great advances have been made during the last decade regarding the understanding of the mechanism of action of these hypotensive proteins. Bradykinin potentiating peptides exert their action primarily by inhibiting the angiotensin-converting enzyme and increasing the effect of endogenous bradykinin. Snake venom phospholipases A2 are capable of reducing blood pressure through the production of arachidonic acid, a precursor of cyclooxygenase metabolites (prostaglandins or prostacyclin). Other snake venom proteins mimic the effects of endogenous kallikrein, natriuretic peptides or vascular endothelial growth factors. The aim of this work was to review the current state of knowledge regarding snake venom components with potential antihypertensive activity and their mechanisms of action.
Collapse
Affiliation(s)
- Orsolya Péterfi
- Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - Francisc Boda
- Department of Fundamental Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania.
| | - Zoltán Szabó
- Department of Specialty Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - Elek Ferencz
- Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - László Bába
- Department of Specialty Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| |
Collapse
|
26
|
Ichiki T, Dzhoyashvili N, Burnett JC. Natriuretic peptide based therapeutics for heart failure: Cenderitide: A novel first-in-class designer natriuretic peptide. Int J Cardiol 2018; 281:166-171. [PMID: 29941213 DOI: 10.1016/j.ijcard.2018.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
Abstract
Cenderitide is a novel designer natriuretic peptide (NP) composed of C-type natriuretic peptide (CNP) fused to the C-terminus of Dendroaspis natriuretic peptide (DNP). Cenderitide was engineered to co-activate the two NP receptors, particulate guanylyl cyclase (pGC)-A and pGC-B. The rationale for its design was to achieve the renal-enhancing and anti-fibrotic properties of dual receptor activation, but without clinically significant hypotension. Here, we review the biology of the NPs and the rationale for their use in heart failure. Most importantly, we present the key studies related to the discovery of Cenderitide. Finally, we review the key clinical studies that have advanced this first-in-class dual NP receptor activator for heart failure.
Collapse
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Department of Physiology and Bioengineering, College of Medicine Mayo Clinic, Rochester, MN, USA
| | - Nina Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Department of Physiology and Bioengineering, College of Medicine Mayo Clinic, Rochester, MN, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Department of Physiology and Bioengineering, College of Medicine Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|