1
|
López-Hernández JE, Nayeem N, Cerón-Carrasco JP, Ahad A, Hafeez A, León IE, Contel M. Platinum(IV)-Gold(I) Agents with Promising Anticancer Activity: Selected Studies in 2D and 3D Triple-Negative Breast Cancer Models. Chemistry 2023; 29:e202302045. [PMID: 37507346 PMCID: PMC10615877 DOI: 10.1002/chem.202302045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
New heterometallic binuclear and trinuclear platinum(IV)-gold(I) compounds of the type [Pt(L)n Cl2 (OH){(OOC-4-C6 H4 -PPh2 )AuCl}x ] (L=NH3 , n=2; x=1, 2; L=diaminocyclohexane, DACH, n=1; x=2) are described. These compounds are cytotoxic and selective against a small panel of renal, bladder, ovarian, and breast cancer cell lines. We selected a trinuclear PtAu2 compound containing the PtIV core based on oxaliplatin, to further investigate its cell-death pathway, cell and organelle uptake and anticancer effects against the triple-negative breast cancer (TNBC) MDA-MB-231 cell line. This compound induces apoptosis and accumulates mainly in the nucleus and mitochondria. It also exerts remarkable antimigratory and antiangiogenic properties, and has a potent cytotoxic effect against TNBC 3D spheroids. Trinuclear compounds do not seem to display relevant interactions with calf thymus (CT) DNA and plasmid (pBR322) even in the presence of reducing agents, but inhibit pro-angiogenic enzyme thioredoxin reductase (TrxR) in TNBC cells.
Collapse
Affiliation(s)
- Javier E López-Hernández
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Nazia Nayeem
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - José P Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña s/n, Base Aérea de San Javier, Santiago de la Ribera, 30720, Murcia, Spain
| | - Afruja Ahad
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
- Radiology, Molecular Pharmacology Program, and, Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY 11065, USA
| | - Aiman Hafeez
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N°1465, La Plata, 1900, Argentina
| | - Maria Contel
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| |
Collapse
|
2
|
Veclani D, Tolazzi M, Cerón-Carrasco JP, Melchior A. Intercalation Ability of Novel Monofunctional Platinum Anticancer Drugs: A Key Step in Their Biological Action. J Chem Inf Model 2021; 61:4391-4399. [PMID: 34156233 PMCID: PMC8479807 DOI: 10.1021/acs.jcim.1c00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Phenanthriplatin
(PtPPH) is a monovalent platinum(II)-based complex
with a large cytotoxicity against cancer cells. Although the aqua-activated
drug has been assumed to be the precursor for DNA damage, it is still
under debate whether the way in which that metallodrug attacks to
DNA is dominated by a direct binding to a guanine base or rather by
an intercalated intermediate product. Aiming to capture the mechanism
of action of PtPPH, the present contribution used theoretical tools
to systematically assess the sequence of all possible mechanisms on
drug activation and reactivity, for example, hydrolysis, intercalation,
and covalent damage to DNA. Ab initio quantum mechanical
(QM) methods, hybrid QM/QM′ schemes, and independent gradient
model approaches are implemented in an unbiased protocol. The performed
simulations show that the cascade of reactions is articulated in three
well-defined stages: (i) an early and fast intercalation of the complex
between the DNA bases, (ii) a subsequent hydrolysis reaction that
leads to the aqua-activated form, and (iii) a final formation of the
covalent bond between PtPPH and DNA at a guanine site. The permanent
damage to DNA is consequently driven by that latter bond to DNA but
with a simultaneous π–π intercalation of the phenanthridine
into nucleobases. The impact of the DNA sequence and the lateral backbone
was also discussed to provide a more complete picture of the forces
that anchor the drug into the double helix.
Collapse
Affiliation(s)
- Daniele Veclani
- Dipartimento Politecnico di Ingegneria e Architettura (DPIA), Laboratori di Chimica, Università di Udine, via delle Scienze 99, 33100 Udine, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura (DPIA), Laboratori di Chimica, Università di Udine, via delle Scienze 99, 33100 Udine, Italy
| | - José P Cerón-Carrasco
- Reconocimiento y Encapsulación Molecular, Universidad Católica San Antonio de Murcia (UCAM). Campus de los Jerónimos, 30107 Murcia, Spain
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura (DPIA), Laboratori di Chimica, Università di Udine, via delle Scienze 99, 33100 Udine, Italy
| |
Collapse
|
3
|
Theoretical Prediction of Dual-Potency Anti-Tumor Agents: Combination of Oxoplatin with Other FDA-Approved Oncology Drugs. Int J Mol Sci 2020; 21:ijms21134741. [PMID: 32635199 PMCID: PMC7369966 DOI: 10.3390/ijms21134741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 02/01/2023] Open
Abstract
Although Pt(II)-based drugs are widely used to treat cancer, very few molecules have been approved for routine use in chemotherapy due to their side-effects on healthy tissues. A new approach to reducing the toxicity of these drugs is generating a prodrug by increasing the oxidation state of the metallic center to Pt(IV), a less reactive form that is only activated once it enters a cell. We used theoretical tools to combine the parent Pt(IV) prodrug, oxoplatin, with the most recent FDA-approved anti-cancer drug set published by the National Institute of Health (NIH). The only prerequisite imposed for the latter was the presence of one carboxylic group in the structure, a chemical feature that ensures a link to the coordination sphere via a simple esterification procedure. Our calculations led to a series of bifunctional prodrugs ranked according to their relative stabilities and activation profiles. Of all the designed molecules, the combination of oxoplatin with aminolevulinic acid as the bioactive ligand emerged as the most promising strategy by which to design enhanced dual-potency oncology drugs.
Collapse
|
4
|
Dvořáčková O, Chval Z. Tuning the Reactivity and Bonding Properties of Metal Square-Planar Complexes by the Substitution(s) on the Trans-Coordinated Pyridine Ring. ACS OMEGA 2020; 5:11768-11783. [PMID: 32478268 PMCID: PMC7254792 DOI: 10.1021/acsomega.0c01161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 05/06/2023]
Abstract
The kinetics of the hydration reaction on trans-[Pt(NH3)2(pyrX)Cl]+ (pyr = pyridine) complexes (X = OH-, Cl-, F-, Br-, NO2 -, NH2, SH-, CH3, C≡CH, and DMA) was studied by density functional theory calculations in the gas phase and in water solution described by the implicit polarizable continuum model method. All possible positions ortho, meta, and para of the substituent X in the pyridine ring were considered. The substitution of the pyr ligand by electron-donating X's led to the strengthening of the Pt-N1(pyrX) (Pt-NpyrX) bond and the weakening of the trans Pt-Cl or Pt-Ow bonds. The electron-withdrawing X's have exactly the opposite effect. The strengths of these bonds can be predicted from the basicity of sigma electrons on the NpyrX atom determined on the isolated pyrX ligand. As the pyrX ring was oriented perpendicularly with respect to the plane of the complex, the nature of the X···Cl electrostatic interaction was the decisive factor for the transition-state (TS) stabilization which resulted in the highest selectivity of ortho-substituted systems with respect to the reaction rate. Because of a smaller size of X's, the steric effects influenced less importantly the values of activation Gibbs energies ΔG ⧧ but caused geometry changes such as the elongation of the Pt-NpyrX bonds. Substitution in the meta position led to the highest ΔG ⧧ values for most of the X's. The changes of ΔG ⧧ because of electronic effects were the same in the gas phase and the water solvent. However, as the water solvent dampened electrostatic interactions, 2200 and 150 times differences in the reaction rate were observed between the most and the least reactive mono-substituted complexes in the gas phase and the water solvent, respectively. An additional NO2 substitution of the pyrNO2 ligand further decelerated the rate of the hydration reaction, but on the other hand, the poly-NH2 complexes were no more reactive than the fastest o-NH2 system. In the gas phase, the poly-X complexes showed the additivity of the substituent effects with respect to the Pt-ligand bond strengths and the ligand charges.
Collapse
Affiliation(s)
- Olga Dvořáčková
- Faculty
of Health and Social Sciences, University
of South Bohemia, J.
Boreckého 27, 370 11 České Budějovice, Czech
Republic
- Faculty
of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Zdeněk Chval
- Faculty
of Health and Social Sciences, University
of South Bohemia, J.
Boreckého 27, 370 11 České Budějovice, Czech
Republic
- . Phone: +420-389-037-612
| |
Collapse
|