1
|
Jacobson K, Ellis-Davies GCR. Abraham Patchornik: The Contemporary Relevance of His Work for Chemistry and Biology. JACS AU 2025; 5:3-16. [PMID: 39886589 PMCID: PMC11775701 DOI: 10.1021/jacsau.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 02/01/2025]
Abstract
Abraham Patchornik was born in 1926 in Ness Ziona, a town in Palestine founded by his great-grandfather Reuben Lehrer in 1883. He started to study chemistry as an undergraduate at the Hebrew University. However, this was interrupted by the war, and he completed his studies in various locations in West Jerusalem. From 1952 to 1956 Patchornik completed his PhD at the (new) Weizmann Institute of Science with Ephraim Katchalski. After a postdoc at the NIH, he returned to the Weizmann in 1958, when he joined the Department of Biophysics. In 1972-1979, he became chairman of the new Department of Organic Chemistry at the Weizmann, and his own research was geared toward applying creative chemistry to solve biological problems. Patchornik passed away in his hometown of Ness Ziona in 2014. Patchornik was a conceptual leader in peptide and polymer chemistry. Given the importance of selective functional group protection for the construction of oligomeric molecules, he became interested in using "nonstandard", orthogonal chemistry for this purpose, i.e. photosensitive protecting groups (PPGs) in place of thermal reactions. It was R.B. Woodward who suggested this strategy to Patchornik in 1965, while Patchornik was on sabbatical leave at Harvard. However, it was not until Patchornik returned to the Weizmann that this idea of a versatile PPG to enable multistep synthesis was realized. Here, we provide an account of the early photosensitive protecting groups that Patchornik and co-workers developed, and the immense impact they have had on various fields. In particular, we survey the use of PPGs in live cell physiology (i.e., caged compounds), and the development of gene chips via light-directed solid-phase synthesis. Further, we highlight recent work applying new PPGs for "photochemical delivery" of drugs, otherwise termed photopharmacology. Finally, we discuss the relationship between caged compounds and how contemporary neuroscience uses genetically encoded chromophores to control cell function.
Collapse
Affiliation(s)
- Kenneth
A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes & Digestive
& Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Graham C. R. Ellis-Davies
- Department
of Neuroscience, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
2
|
Stolarek M, Kaminski K, Kaczor-Kamińska M, Obłoza M, Bonarek P, Czaja A, Datta M, Łach W, Brela M, Sikorski A, Rak J, Nowakowska M, Szczubiałka K. Light-Controlled Anticancer Activity and Cellular Uptake of a Photoswitchable Cisplatin Analogue. J Med Chem 2024; 67:19103-19120. [PMID: 39445571 PMCID: PMC11571217 DOI: 10.1021/acs.jmedchem.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
A photoactive analogue of cisplatin was synthesized with two arylazopyrazole ligands, able to undergo trans-cis/cis-trans photoisomerizations. The cis photoisomer showed a dark half-life of 9 days. The cytotoxicities of both photoisomers of the complex were determined in several cancer and normal cell lines and compared to that of cisplatin. The trans photoisomer of the complex was much more cytotoxic than both the cis photoisomer and cisplatin, and was more toxic for cancer (4T1) than for normal (NMuMG) murine breast cells. 4T1 cell death occurred through necrosis. Photoisomerization of the trans and cis photoisomers internalized by the 4T1 cells increased and decreased their viability, respectively. The cellular uptake of the trans photoisomer was stronger than that of both the cis photoisomer and cisplatin. Both photoisomers interacted with DNA faster than cisplatin. The trans photoisomer was bound stronger by bovine serum albumin and induced a greater decrease in cellular glutathione levels than the cis photoisomer.
Collapse
Affiliation(s)
- Marta Stolarek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Cracow, Poland
| | - Kamil Kaminski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Marta Kaczor-Kamińska
- Chair
of Medical Biochemistry, Jagiellonian University, Collegium Medicum, Kopernika 7C, 31-034 Cracow, Poland
| | - Magdalena Obłoza
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Piotr Bonarek
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Anna Czaja
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Datta
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Wojciech Łach
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Mateusz Brela
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Artur Sikorski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Janusz Rak
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| |
Collapse
|
3
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
4
|
Breton-Patient C, Billotte S, Duchambon P, Fontaine G, Bombard S, Piguel S. Light-Activatable Photocaged UNC2025 for Triggering TAM Kinase Inhibition in Bladder Cancer. Chembiochem 2024; 25:e202300855. [PMID: 38363151 DOI: 10.1002/cbic.202300855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Photopharmacology is an emerging field that utilizes photo-responsive molecules to enable control over the activity of a drug using light. The aim is to limit the therapeutic action of a drug at the level of diseased tissues and organs. Considering the well-known implications of protein kinases in cancer and the therapeutic issues associated with protein kinase inhibitors, the photopharmacology is seen as an innovative and alternative solution with great potential in oncology. In this context, we developed the first photocaged TAM kinase inhibitors based on UNC2025, a first-in-class small molecule kinase inhibitor. These prodrugs showed good stability in biologically relevant buffer and rapid photorelease of the photoremovable protecting group upon UV-light irradiation (<10 min.). These light-activatable prodrugs led to a 16-fold decrease to a complete loss of kinase inhibition, depending on the protein and the position at which the coumarin-type phototrigger was introduced. The most promising candidate was the N,O-dicaged compound, showing the superiority of having two photolabile protecting groups on UNC2025 for being entirely inactive on TAM kinases. Under UV-light irradiation, the N,O-dicaged compound recovered its inhibitory potency in enzymatic assays and displayed excellent antiproliferative activity in RT112 cell lines.
Collapse
Affiliation(s)
- Chloé Breton-Patient
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sébastien Billotte
- Université Paris-Saclay, Faculté de Pharmacie CNRS UMR 8076, 91400, Orsay, France
| | - Patricia Duchambon
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Gaëlle Fontaine
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sophie Bombard
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sandrine Piguel
- Université Paris-Saclay, Faculté de Pharmacie CNRS UMR 8076, 91400, Orsay, France
| |
Collapse
|
5
|
Schulte AM, Alachouzos G, Szymanski W, Feringa BL. The fate of the contact ion pair determines the photochemistry of coumarin-based photocleavable protecting groups. Chem Sci 2024; 15:2062-2073. [PMID: 38332822 PMCID: PMC10848663 DOI: 10.1039/d3sc05725a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Photocleavable protecting groups (PPGs) enable the precise spatiotemporal control over the release of a payload of interest, in particular a bioactive substance, through light irradiation. A crucial parameter that determines the practical applicability of PPGs is the efficiency of payload release, largely governed by the quantum yield of photolysis (QY). Understanding which parameters determine the QY will prove crucial for engineering improved PPGs and their effective future applications, especially in the emerging field of photopharmacology. The Contact Ion Pair (CIP) has been recognized as an important intermediate in the uncaging process, but the key influence of its fate on the quantum yield has not been explored yet, limiting our ability to design improved PPGs. Here, we demonstrate that the CIP escape mechanism of PPGs is crucial for determining their payload- and solvent-dependent photolysis QY, and illustrate that an intramolecular type of CIP escape is superior over diffusion-dependent CIP escape. Furthermore, we report a strong correlation of the photolysis QY of a range of coumarin PPGs with the DFT-calculated height of all three energy barriers involved in the photolysis reaction, despite the vastly different mechanisms of CIP escape that these PPGs exhibit. Using the insights obtained through our analysis, we were able to predict the photolysis QY of a newly designed PPG with particularly high accuracy. The level of understanding of the factors determining the QY of PPGs presented here will move the ever-expanding field of PPG applications forward and provides a blueprint for the development of PPGs with QYs that are independent of payload-topology and solvent polarity.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
6
|
Schlosser J, Fedorova O, Fedorov Y, Ihmels H. Photoinduced in situ generation of DNA-targeting ligands: DNA-binding and DNA-photodamaging properties of benzo[ c]quinolizinium ions. Beilstein J Org Chem 2024; 20:101-117. [PMID: 38264449 PMCID: PMC10804566 DOI: 10.3762/bjoc.20.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
The photoreactions of selected styrylpyridine derivatives to the corresponding benzo[c]quinolizinium ions are described. It is shown that these reactions are more efficient in aqueous solution (97-44%) than in organic solvents (78-20% in MeCN). The quinolizinium derivatives bind to DNA by intercalation with binding constants of 6-11 × 104 M-1, as shown by photometric and fluorimetric titrations as well as by CD- and LD-spectroscopic analyses. These ligand-DNA complexes can also be established in situ upon irradiation of the styrylpyridines and formation of the intercalator directly in the presence of DNA. In addition to the DNA-binding properties, the tested benzo[c]quinolizinium derivatives also operate as photosensitizers, which induce DNA damage at relative low concentrations and short irradiation times, even under anaerobic conditions. Investigations of the mechanism of the DNA damage revealed the involvement of intermediate hydroxyl radicals and C-centered radicals. Under aerobic conditions, singlet oxygen only contributes to marginal extent to the DNA damage.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Olga Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Yuri Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
7
|
Schulte AM, Smid LM, Alachouzos G, Szymanski W, Feringa BL. Cation delocalization and photo-isomerization enhance the uncaging quantum yield of a photocleavable protecting group. Chem Commun (Camb) 2024; 60:578-581. [PMID: 38095129 PMCID: PMC10783650 DOI: 10.1039/d3cc05055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Photocleavable protecting groups (PPGs) enable the light-induced, spatiotemporal control over the release of a payload of interest. Two fundamental challenges in the design of new, effective PPGs are increasing the quantum yield (QY) of photolysis and red-shifting the absorption spectrum. Here we describe the combination of two photochemical strategies for PPG optimization in one molecule, resulting in significant improvements in both these crucial parameters. Furthermore, we for the first time identify the process of photo-isomerization to strongly influence the QY of photolysis of a PPG and identify the cis-isomer as the superior PPG.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| | - Lianne M Smid
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| |
Collapse
|
8
|
Bikbaeva G, Pilip A, Egorova A, Kolesnikov I, Pankin D, Laptinskiy K, Vervald A, Dolenko T, Leuchs G, Manshina A. All-in-One Photoactivated Inhibition of Butyrylcholinesterase Combined with Luminescence as an Activation and Localization Indicator: Carbon Quantum Dots@Phosphonate Hybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2409. [PMID: 37686919 PMCID: PMC10489800 DOI: 10.3390/nano13172409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Photopharmacology is a booming research area requiring a new generation of agents possessing simultaneous functions of photoswitching and pharmacophore. It is important that any practical implementation of photopharmacology ideally requires spatial control of the medicinal treatment zone. Thus, advances in the study of substances meeting all the listed requirements will lead to breakthrough research in the coming years. In this study, CQDs@phosphonate nanohybrids are presented for the first time and combine biocompatible and nontoxic luminescent carbon quantum dots (CQDs) with photoactive phosphonate enabling inhibition of butyrylcholinesterase (BChE), which is a prognostic marker of numerous diseases. The conjunction of these components in hybrids maintains photoswitching and provides enhancement of BChE inhibition. After laser irradiation with a wavelength of 266 nm, CQDs@phosphonate hybrids demonstrate a drastic increase of butyrylcholinesterase inhibition from 38% up to almost 100% and a simultaneous luminescence decrease. All the listed hybrid properties are demonstrated not only for in vitro experiments but also for complex biological samples, i.e., chicken breast. Thus, the most important achievement is the demonstration of hybrids characterized by a remarkable combination of all-in-one properties important for photopharmacology: (i) bioactivity toward butyrylcholinesterase inhibition, (ii) strong change of inhibition degree as a result of laser irradiation, luminescence as an indicator of (iii) bioactivity state, and of (iv) spatial localization on the surface of a sample.
Collapse
Affiliation(s)
- Gulia Bikbaeva
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia;
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Anna Pilip
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg 197110, Russia
| | - Anastasia Egorova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg 197110, Russia
- World-Class Laboratory, St. Petersburg State Technological Institute (Technical University), St. Petersburg 190013, Russia
| | - Ilya Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Dmitrii Pankin
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Kirill Laptinskiy
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Alexey Vervald
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Tatiana Dolenko
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Gerd Leuchs
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Alina Manshina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia;
| |
Collapse
|
9
|
Nadendla K, Chintala S, Kover K, Friedman SH. In vivo variable and multi-day response from an insulin-releasing photoactivated depot. Bioorg Med Chem Lett 2023; 92:129388. [PMID: 37369330 PMCID: PMC10529906 DOI: 10.1016/j.bmcl.2023.129388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Previously we have demonstrated that light can be used to control the release of insulin in diabetic animals, followed by a reduction in blood glucose. This is accomplished using a photoactivated depot (PAD) of insulin injected into the skin, and irradiated by a small external LED light source. In this work for the first time we demonstrate dose-response, showing that we can vary insulin release and commensurate blood glucose reduction by varying the amount of light administered. In addition to demonstrating dose-response, we have shown multi-day depot response, with insulin being released on two different days from the same depot. The material used in these studies was CD-insulin, a form of insulin that has a highly non-polar cyclododecyl group attached, markedly reducing the solubility of the modified material, and allowing it to form a depot upon injection. Upon photolysis, the cyclododecyl group is removed, releasing fully native, soluble insulin. Variable response and multi-day response as demonstrated strongly support the potential utility of the PAD approach for the variable and extended release of therapeutic peptides.
Collapse
Affiliation(s)
- Karthik Nadendla
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | - Swetha Chintala
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | - Karen Kover
- Department of Endocrinology, Children's Mercy Hospital, Kansas City, MO 64108, United States; Department of Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | - Simon H Friedman
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States.
| |
Collapse
|
10
|
Menéndez-Velázquez A, García-Delgado AB. A Novel Photopharmacological Tool: Dual-Step Luminescence for Biological Tissue Penetration of Light and the Selective Activation of Photodrugs. Int J Mol Sci 2023; 24:ijms24119404. [PMID: 37298355 DOI: 10.3390/ijms24119404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Conventional pharmacology lacks spatial and temporal selectivity in terms of drug action. This leads to unwanted side effects, such as damage to healthy cells, as well as other less obvious effects, such as environmental toxicity and the acquisition of resistance to drugs, especially antibiotics, by pathogenic microorganisms. Photopharmacology, based on the selective activation of drugs by light, can contribute to alleviating this serious problem. However, many of these photodrugs are activated by light in the UV-visible spectral range, which does not propagate through biological tissues. In this article, to overcome this problem, we propose a dual-spectral conversion technique, which simultaneously makes use of up-conversion (using rare earth elements) and down-shifting (using organic materials) techniques in order to modify the spectrum of light. Near-infrared light (980 nm), which penetrates tissue fairly well, can provide a "remote control" for drug activation. Once near-IR light is inside the body, it is up-converted to the UV-visible spectral range. Subsequently, this radiation is down-shifted in order to accurately adjust to the excitation wavelengths of light which can selectively activate hypothetical and specific photodrugs. In summary, this article presents, for the first time, a "dual tunable light source" which can penetrate into the human body and deliver light of specific wavelengths; thus, it can overcome one of the main limitations of photopharmacology. It opens up promising possibilities for the moving of photodrugs from the laboratory to the clinic.
Collapse
|
11
|
Sarabando SN, Palmeira A, Sousa ME, Faustino MAF, Monteiro CJP. Photomodulation Approaches to Overcome Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:682. [PMID: 37242465 PMCID: PMC10221556 DOI: 10.3390/ph16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Photopharmacology is an approach that aims to be an alternative to classical chemotherapy. Herein, the different classes of photoswitches and photocleavage compounds and their biological applications are described. Proteolysis targeting chimeras (PROTACs) containing azobenzene moieties (PHOTACs) and photocleavable protecting groups (photocaged PROTACs) are also mentioned. Furthermore, porphyrins are referenced as successful photoactive compounds in a clinical context, such as in the photodynamic therapy of tumours as well as preventing antimicrobial resistance, namely in bacteria. Porphyrins combining photoswitches and photocleavage systems are highlighted, taking advantage of both photopharmacology and photodynamic action. Finally, porphyrins with antibacterial activity are described, taking advantage of the synergistic effect of photodynamic treatment and antibiotic therapy to overcome bacterial resistance.
Collapse
Affiliation(s)
- Sofia N. Sarabando
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | | | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| |
Collapse
|
12
|
Egyed A, Németh K, Molnár TÁ, Kállay M, Kele P, Bojtár M. Turning Red without Feeling Embarrassed─Xanthenium-Based Photocages for Red-Light-Activated Phototherapeutics. J Am Chem Soc 2023; 145:4026-4034. [PMID: 36752773 PMCID: PMC9951246 DOI: 10.1021/jacs.2c11499] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 02/09/2023]
Abstract
Herein, we present high-yielding, concise access to a set of xanthenium-derived, water-soluble, low-molecular-weight photocages allowing light-controlled cargo release in the green to red region. Very importantly, these new photocages allow installation of various payloads through ester, carbamate, or carbonate linkages even at the last stage of the synthesis. Payloads were uncaged with high efficiency upon green, orange, or red light irradiation, leading to the release of carboxylic acids, phenols, and amines. The near-ideal properties of a carboxanthenium derivative were further evaluated in the context of light-controlled drug release using a camptothecin-derived chemotherapeutic drug, SN38. Notably, the caged drug showed orders of magnitude lower efficiency in cellulo, which was reinstated after red light irradiation. The presented photocages offer properties that facilitate the translation of photoactivated chemotherapy toward clinical applications.
Collapse
Affiliation(s)
- Alexandra Egyed
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/a., H-1117 Budapest, Hungary
| | - Krisztina Németh
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Tibor Á. Molnár
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Péter Kele
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Márton Bojtár
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| |
Collapse
|
13
|
Johan AN, Li Y. Development of Photoremovable Linkers as a Novel Strategy to Improve the Pharmacokinetics of Drug Conjugates and Their Potential Application in Antibody-Drug Conjugates for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:655. [PMID: 35745573 PMCID: PMC9230074 DOI: 10.3390/ph15060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Although there have been extensive research and progress on the discovery of anticancer drug over the years, the application of these drugs as stand-alone therapy has been limited by their off-target toxicities, poor pharmacokinetic properties, and low therapeutic index. Targeted drug delivery, especially drug conjugate, has been recognized as a technology that can bring forth a new generation of therapeutics with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate is of essential importance because it impacts the circulation time of the conjugate and the release of the drug for full activity at the target site. Recently, the light-triggered linker has attracted a lot of attention due to its spatiotemporal controllability and attractive prospects of improving the overall pharmacokinetics of the conjugate. In this paper, the latest developments of UV- and IR-triggered linkers and their application and potential in drug conjugate development are reviewed. Some of the most-well-researched photoresponsive structural moieties, such as UV-triggered coumarin, ortho-nitrobenzyl group (ONB), thioacetal ortho-nitrobenzaldehyde (TNB), photocaged C40-oxidized abasic site (PC4AP), and IR-triggered cyanine and BODIPY, are included for discussion. These photoremovable linkers show better physical and chemical stabilities and can undergo rapid cleavage upon irradiation. Very importantly, the drug conjugates containing these linkers exhibit reduced off-target toxicity and overall better pharmacokinetic properties. The progress on photoactive antibody-drug conjugates, such as antibody-drug conjugates (ADC) and antibody-photoabsorber conjugate (APC), as precision medicine in clinical cancer treatment is highlighted.
Collapse
Affiliation(s)
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
14
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
15
|
Davighi MG, Clemente F, Matassini C, Cardona F, Nielsen MB, Goti A, Morrone A, Paoli P, Cacciarini M. Photoswitchable inhibitors of human β-glucocerebrosidase. Org Biomol Chem 2022; 20:1637-1641. [PMID: 35107482 DOI: 10.1039/d1ob02159a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-switchable inhibitors of the enzyme β-glucocerebrosidase (GCase) have been developed by anchoring a specific azasugar to a dihydroazulene or an azobenzene responsive moiety. Their inhibitory effect towards human GCase, before and after irradiation are reported, and the effect on thermal denaturation of recombinant GCase and cytotoxicity were studied on selected candidates.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Francesca Clemente
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Camilla Matassini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Francesca Cardona
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy. .,Associated with LENS, via N. Carrara 1, 50019 Sesto F.no (FI), Italy
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Andrea Goti
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy. .,Associated with LENS, via N. Carrara 1, 50019 Sesto F.no (FI), Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health. University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Martina Cacciarini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| |
Collapse
|