1
|
Yakubova II, Ostrianko V, Skrypnyk Y, Volovodovskiy R. Extrinsic black staining of teeth: a review. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2025; 78:210-215. [PMID: 40023874 DOI: 10.36740/wlek/197130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Aim: Discovering of the prevalence, causes and consequences of the Extrinsic black staining(EBS) of teeth in pediatric population. PATIENTS AND METHODS Materials and Methods: Upon completion of the scientific search, the review included 47 scientific articles from the electronic databases, reference lists of articles, and selected textbooks in the time interval from 1976 to 2023. CONCLUSION Conclusions: The results show that EBS is a possible protective factor against early childhood caries. Dental plaque and gut microbiome may be related to EBS in the temporary dentition. The literature suggests a decreased caries prevalence in the presence of EBS which associated with low incidence of caries in children. The nature of the black pigmentation is suggested to be a form of bacterial plaque with an insoluble ferric salt. Tabaco smoke, food and antibiotics that can be also a risk factors for EBS. There are some clinical and localization features that dentist have to pay attention for. Many diseases of various systems and organs are directly related to black plaque. With this review, we wanted to encourage dentists to identify the problem in childhood and collaborate in a multidisciplinary team to improve treatment efficiency and speed up the selection of the right tactics for the most person-centered approach to avoid worsening the problem in adulthood.
Collapse
Affiliation(s)
- Inessa I Yakubova
- PRIVATE HIGHER EDUCATIONAL ESTABLISHMENT «KYIV MEDICAL UNIVERSITY», KYIV, UKRAINE
| | | | - Yurii Skrypnyk
- PRIVATE HIGHER EDUCATIONAL ESTABLISHMENT «KYIV MEDICAL UNIVERSITY», KYIV, UKRAINE
| | - Roman Volovodovskiy
- PRIVATE HIGHER EDUCATIONAL ESTABLISHMENT «KYIV MEDICAL UNIVERSITY», KYIV, UKRAINE
| |
Collapse
|
2
|
Lin X, Wang Y, Ma Z, Xie M, Liu Z, Cheng J, Tian Y, Shi H. Correlation between caries activity and salivary microbiota in preschool children. Front Cell Infect Microbiol 2023; 13:1141474. [PMID: 37113131 PMCID: PMC10126836 DOI: 10.3389/fcimb.2023.1141474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Early childhood caries (ECC) is the most common chronic infectious oral disease in preschool children worldwide. It is closely related to the caries activity (CA) of children. However, the distribution characteristics of oral saliva microbiomes in children with different CA are largely underexplored. The aim of this study was to investigate the microbial community in saliva of preschool children with different CA and caries status, and to analyze the difference of microbial community in saliva of children with different CA and its correlation with ECC. Subjects were divided into 3 groups based on the Cariostat caries activity test: Group H, high CA (n=30); Group M, medium CA (n = 30); Group L, low CA (n=30). Questionnaire survey was used to explore the related influencing factors of CA. According to the caries status (on the basis of decayed mising filled teeth), these subjects were divided into caries-free group (dmft=0, n=19), caries-low group (0 < dmft ≤ 4, n=27) and caries-high group (dmft > 4, n=44). Microbial profiles of oral saliva were analyzed using 16S rRNA gene sequencing. There were significant differences in the microbial structure (P < 0.05). Scardovia and Selenomonas were the biomarkers of both H group and high caries group. The genus Abiotrophia and Lautropia were the biomarkers of both the L group and the low caries group, while the Lactobacillus and Arthrospira spp. were significantly enriched in the M group. The area under the ROC curve of the combined application of dmft score, age, frequency of sugary beverage intake, and the genus Scardovia, Selenomonas, and Campylobacter in screening children with high CA was 0.842. Moreover, function prediction using the MetaCyc database showed that there were significant differences in 11 metabolic pathways of salivary microbiota among different CA groups. Certain bacteria genera in saliva such as Scardovia and Selenomonas may be helpful in screening children with high CA.
Collapse
Affiliation(s)
- Xiuyan Lin
- Department of Pediatric Dentistry, Hospital of Stomatology and Hebei Provincial Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Wang
- Department of Stomatology, Zhao County Maternal and Child Health Hospital, Shijiazhuang, China
| | - Zhe Ma
- Department of Preventive Dentistry, Hospital of Stomatology and Hebei Provincial Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Meng Xie
- Department of Pediatric Dentistry, Hospital of Stomatology and Hebei Provincial Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Zhuo Liu
- Department of Stomatology, Zhao County Maternal and Child Health Hospital, Shijiazhuang, China
| | - Jinghui Cheng
- Department of Stomatology, Zhao County Maternal and Child Health Hospital, Shijiazhuang, China
| | - Yuzhao Tian
- Department of Stomatology, Zhao County Maternal and Child Health Hospital, Shijiazhuang, China
| | - Hong Shi
- Department of Pediatric Dentistry, Hospital of Stomatology and Hebei Provincial Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Zheng L, Cao T, Xiong P, Ma Y, Wei L, Wang J. Characterization of the oral microbiome and gut microbiome of dental caries and extrinsic black stain in preschool children. Front Microbiol 2023; 14:1081629. [PMID: 37065128 PMCID: PMC10103904 DOI: 10.3389/fmicb.2023.1081629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionA lower prevalence of dental caries (hereafter termed “caries”) has been observed in children with dental extrinsic black stain (EBS).MethodsWe investigated the epidemiologic characterization of EBS and explored the possible role of the oral microbiome (OM) and gut microbiome (GM) in EBS formation and caries prevention. In an epidemiologic survey, 2,675 children aged 3–6 years were included. Thirty-eight of these children (7 children had both caries and EBS, 10 had EBS only, 11 had caries only, and 10 were healthy children) were recruited for 16S rRNA sequencing and collection of samples of supragingival plaque and feces. Collected plaque samples were divided into four groups: BCP (EBS+, caries+), BP (EBS+, caries−), CP (EBS−, caries+), and P (EBS−, caries−). Fecal samples were also divided into four groups: BCF (EBS+, caries+), BF (EBS+, caries−), CF (EBS−, caries+), and F (EBS−, caries−).ResultsEBS was observed in 12.10% of this population. Children with EBS had a significantly reduced prevalence of caries and a lower mean value of decayed–missing–filled teeth (dmft; p < 0.01). According to analyses of dental plaque, the P group had the most complex microbiome. The BCP group exhibited greater operational taxonomic unit (OTU) richness but a reduced evenness compared with the BP group, and the CP group showed greater OTU richness than the BP group. At the genus level, higher abundance of Actinomyces and Cardiobacterium species was observed in the BCP group. Higher abundance of Lautropia and Pesudopropionibacteriumin species was observed in the BP group compared with P and CP groups, respectively (p < 0.05). Veillonella species were significantly more common in P and CP groups than in BP groups, whereas Porphyromonas and Fusobacterium species were more common in the CP group (p < 0.05). With regard to the GM, the CF group exhibited greater OTU diversity than the BF group. The GM in the BCF group exhibited the most complex relationships across all fecal groups. GM groups could be distinguished by various unique biomarkers, such as Escherichia and Shigella species in the BCF group, Agathobacter and Ruminococcus species in the CF group, Lactobacillus species in the BF group, and Roseburia species in the F group. Our results suggest that EBS is a possible protective factor against early-childhood caries. Dental plaque and the GM may be relevant to EBS in primary dentition.
Collapse
Affiliation(s)
- Luoyuan Zheng
- School and Hospital of Stomatology, Wenzhou Medical University,, Wenzhou, China
| | - Tingting Cao
- School and Hospital of Stomatology, Wenzhou Medical University,, Wenzhou, China
| | - Puling Xiong
- School and Hospital of Stomatology, Wenzhou Medical University,, Wenzhou, China
| | - Yulian Ma
- School and Hospital of Stomatology, Wenzhou Medical University,, Wenzhou, China
| | - Limin Wei
- Department of Preventive Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Limin Wei, ; Jianfeng Wang,
| | - Jianfeng Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Limin Wei, ; Jianfeng Wang,
| |
Collapse
|
4
|
Hirtz C, Mannaa AM, Moulis E, Pible O, O’Flynn R, Armengaud J, Jouffret V, Lemaistre C, Dominici G, Martinez AY, Dunyach-Remy C, Tiers L, Lavigne JP, Tramini P, Goldsmith MC, Lehmann S, Deville de Périère D, Vialaret J. Deciphering Black Extrinsic Tooth Stain Composition in Children Using Metaproteomics. ACS OMEGA 2022; 7:8258-8267. [PMID: 35309464 PMCID: PMC8928488 DOI: 10.1021/acsomega.1c04770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The present study focuses on the use of a metaproteomic approach to analyze Black Extrinsic Tooth Stains, a specific type of pigmented extrinsic substance. Metaproteomics is a powerful emerging technology that successfully enabled human protein and bacterial identification of this specific dental biofilm using high-resolution tandem mass spectrometry. A total of 1600 bacterial proteins were identified in black stain (BS) samples and 2058 proteins in dental plaque (DP) samples, whereas 607 and 582 human proteins were identified in BS and DP samples, respectively. A large diversity of bacteria genera (142) in BS and DP was identified, showing a high prevalence of Rothia, Kingella, Neisseria, and Pseudopropionibacterium in black stain samples. In this work, the high diversity of the dental microbiota and its proteome is highlighted, including significant differences between black stain and dental plaque samples.
Collapse
Affiliation(s)
- Christophe Hirtz
- Univ
Montpellier, INM, IRMB, INSERM, CHU Montpellier, CNRS, Montpellier 34070, France
| | - Atef Mahmoud Mannaa
- Higher
Institute of Engineering and Technology, New Borg AlArab City 21934, Alexandria, Egypt
- INSERM
U1192, Laboratoire Protéomique, Réponse Inflammatoire
& Spectrométrie de Masse (PRISM), Université de Lille, Lille F-59000, France
| | - Estelle Moulis
- U.F.R.
d’Odontologie, Département de pédodontie, 545, Avenue du Professeur Jean-Louis
Viala, Montpellier Cedex 5 34 193, France
| | - Olivier Pible
- Laboratoire
Innovations Technologiques pour la Détection et le Diagnostic
(Li2D), Université de Montpellier, Bagnols-sur-Cèze F-30207, France
| | - Robin O’Flynn
- U.F.R.
d’Odontologie, Département de pédodontie, 545, Avenue du Professeur Jean-Louis
Viala, Montpellier Cedex 5 34 193, France
| | - Jean Armengaud
- Laboratoire
Innovations Technologiques pour la Détection et le Diagnostic
(Li2D), Université de Montpellier, Bagnols-sur-Cèze F-30207, France
| | - Virginie Jouffret
- Laboratoire
Innovations Technologiques pour la Détection et le Diagnostic
(Li2D), Université de Montpellier, Bagnols-sur-Cèze F-30207, France
| | - Camille Lemaistre
- U.F.R.
d’Odontologie, Département de pédodontie, 545, Avenue du Professeur Jean-Louis
Viala, Montpellier Cedex 5 34 193, France
| | - Gabriel Dominici
- U.F.R.
d’Odontologie, Département de pédodontie, 545, Avenue du Professeur Jean-Louis
Viala, Montpellier Cedex 5 34 193, France
| | - Alex Yahiaoui Martinez
- Virulence
Bactérienne et Infections Chroniques, INSERM U1047, Univ Montpellier,
Department of Microbiology and Hospital Hygiene, Nîmes University Hospital, Nîmes 30029, France
| | - Catherine Dunyach-Remy
- Virulence
Bactérienne et Infections Chroniques, INSERM U1047, Univ Montpellier,
Department of Microbiology and Hospital Hygiene, Nîmes University Hospital, Nîmes 30029, France
| | - Laurent Tiers
- Univ
Montpellier, INM, IRMB, INSERM, CHU Montpellier, CNRS, Montpellier 34070, France
| | - Jean-Philippe Lavigne
- Virulence
Bactérienne et Infections Chroniques, INSERM U1047, Univ Montpellier,
Department of Microbiology and Hospital Hygiene, Nîmes University Hospital, Nîmes 30029, France
| | - Paul Tramini
- U.F.R.
d’Odontologie, Département de pédodontie, 545, Avenue du Professeur Jean-Louis
Viala, Montpellier Cedex 5 34 193, France
| | - Marie-christine Goldsmith
- U.F.R.
d’Odontologie, Département de pédodontie, 545, Avenue du Professeur Jean-Louis
Viala, Montpellier Cedex 5 34 193, France
| | - Sylvain Lehmann
- Univ
Montpellier, INM, IRMB, INSERM, CHU Montpellier, CNRS, Montpellier 34070, France
| | | | - Jerome Vialaret
- Univ
Montpellier, INM, IRMB, INSERM, CHU Montpellier, CNRS, Montpellier 34070, France
| |
Collapse
|
5
|
Sun P, Guo Z, Guo D, Wang J, Wu T, Li T, Liu J, Liu X. The Microbiota Profile Analysis of Combined Periodontal-Endodontic Lesions Using 16S rRNA Next-Generation Sequencing. J Immunol Res 2021; 2021:2490064. [PMID: 34825007 PMCID: PMC8610669 DOI: 10.1155/2021/2490064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The primary aim of this investigation was to analyze the microbiome in patients with combined periodontal-endodontic lesions. METHOD Patients with loose and/or painful teeth referred for treatment from March 2020 to December 2020 in the First People's Hospital of Jinzhong were recruited. Samples were collected from teeth diagnosed as chronic periodontics (PE), ulcerative pulpitis (PU), and retrograde pulpitis (RE). Genomic DNA was extracted. The quantitative polymerase chain reaction, targeting the 16S ribosomal RNA (rRNA), was adopted for the quantification of bacteria. Then, the V3-V4 hypervariable regions of the 16S rRNA gene were amplified and subjected to next-generation sequencing. The statistical analysis was performed by R software (V3.5.1). RESULTS A total of 57 qualified samples were collected from 48 patients and analyzed (7 PE, 21 PU, and 19 RE). By linear discriminant analysis effect size, Kingella and Barnesiella were significantly increased in the periodontal pocket of retrograde pulpitis (RE-PE), compared with PE. The relative abundance of Clostridiales Incertae Sedis XI, Fusobacteriaceae, Fusobacterium, Parvimonas, Micrococcaceae, and Rothia was significantly increased in the pulp of retrograde pulpitis (RE-PU) than PU and RE-PE. Prevotella, Leptotrichia, Porphyromonas, Streptococcus, and Fusobacterium are consistently at a high abundance, across PU, RE-PE, and RE-PU. CONCLUSION The current study highlighted the evidence that a specific microbial community is associated with the occurrence of retrograde pulpitis. The microenvironment of the root canal and pulp chamber will select microbiota. This study offered insights into the pathogenesis of retrograde pulpitis.
Collapse
Affiliation(s)
- Ping Sun
- The First People's Hospital of Jinzhong, Jinzhong City, 030600 Shanxi Province, China
| | - Zhiyong Guo
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Daiping Guo
- The First People's Hospital of Jinzhong, Jinzhong City, 030600 Shanxi Province, China
| | - Jian Wang
- The First People's Hospital of Jinzhong, Jinzhong City, 030600 Shanxi Province, China
| | - Tingting Wu
- The First People's Hospital of Jinzhong, Jinzhong City, 030600 Shanxi Province, China
| | - Tingjun Li
- The First People's Hospital of Jinzhong, Jinzhong City, 030600 Shanxi Province, China
| | - Jiannan Liu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xinhua Liu
- The First People's Hospital of Jinzhong, Jinzhong City, 030600 Shanxi Province, China
| |
Collapse
|
6
|
Nagai N, Homma H, Sakurai A, Takahashi N, Shintani S. Microbiomes of colored dental biofilms in children with or without severe caries experience. Clin Exp Dent Res 2020; 6:659-668. [PMID: 32767520 PMCID: PMC7745070 DOI: 10.1002/cre2.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Biofilm coloration can compromise maturation and increase the risk of oral disease in adulthood, though children with colored biofilm do not always demonstrate a poor oral health status. AIM The microbial compositions of colored and white biofilms in children were compared. DESIGN Thirty-two dental biofilm samples from 16 children (age < 13 years) were analyzed using 16S rRNA pyrosequencing, then the subjects were divided into severe caries and healthy (caries-free) groups. Correlations between microbiomes and oral health status were also examined. RESULTS Phylogenetic analysis revealed no distinctly different patterns between colored and white biofilms. In the severe caries group, genus Actinomyces, Cardiobacterium, Kingella, Lautropia, and Veillonella, and family Neisseriaceae were detected, though abundance was significantly different between colored and white biofilm specimens, in contrast to the healthy group. In addition, five colored biofilm samples from the severe caries group contained greater than 15% Actinomyces, which led us to consider that genus to be possibly associated with formation of colored biofilm in children. CONCLUSIONS Our findings indicate that differences in bacterial composition between colored and white biofilms are higher in individuals with severe caries. Additional research may reveal the significance of colored dental biofilm in children.
Collapse
Affiliation(s)
- Nobuko Nagai
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Hiromi Homma
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Atsuo Sakurai
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Naoko Takahashi
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|