• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5073089)   Today's Articles (92)
For: Majewski A, Morris DJ, Kendall K, Wills M. A continuous-flow method for the generation of hydrogen from formic acid. ChemSusChem 2010;3:431-434. [PMID: 20301180 DOI: 10.1002/cssc.201000017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Number Cited by Other Article(s)
1
Guo J, Li M, Yin C, Zhong D, Zhang Y, Li X, Wang Y, Yuan J, Xie H, Qi T. Formic Acid Dehydrogenation through Ligand Design Strategy of Amidation in Half-Sandwich Ir Complexes. Inorg Chem 2023;62:18982-18989. [PMID: 37939313 DOI: 10.1021/acs.inorgchem.3c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
2
Piazza V, Junior RB, Gazzoli D, Groppi G, Beretta A. H2 from biofuels and carriers: A kinetic investigation of formic acid decomposition on Rh/Al2O3 in the annular reactor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
3
Guo J, Yin C, Li M, Zhong D, Zhang Y, Li X, Wang Y, Yao H, Qi T. Picolinamide‐Based Iridium Catalysts for Aqueous Formic Acid Dehydrogenation: Increase in Electron Density of Amide N through Substituents. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
4
Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. CHEMSUSCHEM 2021;14:2655-2681. [PMID: 33963668 DOI: 10.1002/cssc.202100602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
5
Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies. Catalysts 2021. [DOI: 10.3390/catal11030341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
6
Caiti M, Padovan D, Hammond C. Continuous Production of Hydrogen from Formic Acid Decomposition Over Heterogeneous Nanoparticle Catalysts: From Batch to Continuous Flow. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01977] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
7
Zhang Y, Chen X, Zheng B, Guo X, Pan Y, Chen H, Li H, Min S, Guan C, Huang KW, Zheng J. Structural analysis of transient reaction intermediate in formic acid dehydrogenation catalysis using two-dimensional IR spectroscopy. Proc Natl Acad Sci U S A 2018;115:12395-12400. [PMID: 30455307 PMCID: PMC6298111 DOI: 10.1073/pnas.1809342115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
8
Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem Rev 2017;118:372-433. [DOI: 10.1021/acs.chemrev.7b00182] [Citation(s) in RCA: 608] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
9
Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Zhan Y, Shen Y, Du Y, Yue B, Zhou X. Promotion of iridium complex catalysts for HCOOH dehydrogenation by trace oxygen. KINETICS AND CATALYSIS 2017. [DOI: 10.1134/s002315841705024x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
11
Iguchi M, Zhong H, Himeda Y, Kawanami H. Kinetic Studies on Formic Acid Dehydrogenation Catalyzed by an Iridium Complex towards Insights into the Catalytic Mechanism of High‐Pressure Hydrogen Gas Production. Chemistry 2017;23:17017-17021. [DOI: 10.1002/chem.201702969] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 01/10/2023]
12
Matsunami A, Kuwata S, Kayaki Y. A Bifunctional Iridium Catalyst Modified for Persistent Hydrogen Generation from Formic Acid: Understanding Deactivation via Cyclometalation of a 1,2-Diphenylethylenediamine Motif. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01068] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Zhan Y, Shen Y, Li S, Yue B, Zhou X. Hydrogen generation from glucose catalyzed by organoruthenium catalysts under mild conditions. Chem Commun (Camb) 2017;53:4230-4233. [PMID: 28357439 DOI: 10.1039/c7cc00177k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Czaun M, Kothandaraman J, Goeppert A, Yang B, Greenberg S, May RB, Olah GA, Prakash GKS. Iridium-Catalyzed Continuous Hydrogen Generation from Formic Acid and Its Subsequent Utilization in a Fuel Cell: Toward a Carbon Neutral Chemical Energy Storage. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01605] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Mellone I, Gorgas N, Bertini F, Peruzzini M, Kirchner K, Gonsalvi L. Selective Formic Acid Dehydrogenation Catalyzed by Fe-PNP Pincer Complexes Based on the 2,6-Diaminopyridine Scaffold. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00551] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Pan Y, Pan C, Zhang Y, Li H, Min S, Guo X, Zheng B, Chen H, Anders A, Lai Z, Zheng J, Huang K. Selective Hydrogen Generation from Formic Acid with Well‐Defined Complexes of Ruthenium and Phosphorus–Nitrogen PN 3 ‐Pincer Ligand. Chem Asian J 2016;11:1357-60. [DOI: 10.1002/asia.201600169] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 11/11/2022]
17
Papp G, Ölveti G, Horváth H, Kathó Á, Joó F. Highly efficient dehydrogenation of formic acid in aqueous solution catalysed by an easily available water-soluble iridium(iii) dihydride. Dalton Trans 2016;45:14516-9. [DOI: 10.1039/c6dt01695b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
18
Singh AK, Singh S, Kumar A. Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01276g] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
19
Chen HYT, Wang C, Wu X, Jiang X, Catlow CRA, Xiao J. Iridicycle-Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism. Chemistry 2015;21:16564-77. [PMID: 26406610 DOI: 10.1002/chem.201501074] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/17/2023]
20
Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chem Rev 2015;115:12936-73. [DOI: 10.1021/acs.chemrev.5b00197] [Citation(s) in RCA: 1023] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
21
Choudhary H, Nishimura S, Ebitani K. Hydrothermal Preparation of a Robust Boehmite-SupportedN,N-DimethyldodecylamineN-Oxide-Capped Cobalt and Palladium Catalyst for the Facile Utilization of Formic Acid as a Hydrogen Source. ChemCatChem 2015. [DOI: 10.1002/cctc.201500161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
22
Tao L, Zhang Q, Li SS, Liu X, Liu YM, Cao Y. Heterogeneous Gold-Catalyzed Selective Reductive Transformation of Quinolines with Formic Acid. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201400721] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
23
Lv Q, Feng L, Hu C, Liu C, Xing W. High-quality hydrogen generated from formic acid triggered by in situ prepared Pd/C catalyst for fuel cells. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00245a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Guerriero A, Bricout H, Sordakis K, Peruzzini M, Monflier E, Hapiot F, Laurenczy G, Gonsalvi L. Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution. ACS Catal 2014. [DOI: 10.1021/cs500655x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
25
Zeng M, Li L, Herzon SB. A Highly Active and Air-Stable Ruthenium Complex for the Ambient Temperature Anti-Markovnikov Reductive Hydration of Terminal Alkynes. J Am Chem Soc 2014;136:7058-67. [DOI: 10.1021/ja501738a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
26
Manaka Y, Wang WH, Suna Y, Kambayashi H, Muckerman JT, Fujita E, Himeda Y. Efficient H2generation from formic acid using azole complexes in water. Catal Sci Technol 2014. [DOI: 10.1039/c3cy00830d] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
27
Wang WH, Himeda Y, Muckerman JT, Fujita E. Interconversion of CO2/H2 and Formic Acid Under Mild Conditions in Water. ADVANCES IN INORGANIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-420221-4.00006-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
28
Ruthenium-Catalyzed Hydrogen Generation from Alcohols and Formic Acid, Including Ru-Pincer-Type Complexes. TOP ORGANOMETAL CHEM 2014. [DOI: 10.1007/3418_2014_84] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
29
Aresta M, Dibenedetto A, Angelini A. Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem Rev 2013. [DOI: 10.1021/cr4002758 pmid: 24313306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
30
Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 2013;114:1709-42. [PMID: 24313306 DOI: 10.1021/cr4002758] [Citation(s) in RCA: 1699] [Impact Index Per Article: 141.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Sordakis K, Beller M, Laurenczy G. Chemical Equilibria in Formic Acid/Amine-CO2Cycles under Isochoric Conditions using a Ruthenium(II) 1,2-Bis(diphenylphosphino)ethane Catalyst. ChemCatChem 2013. [DOI: 10.1002/cctc.201300740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
32
Gan W, Snelders DJM, Dyson PJ, Laurenczy G. Ruthenium(II)-Catalyzed Hydrogen Generation from Formic Acid using Cationic, Ammoniomethyl-Substituted Triarylphosphine Ligands. ChemCatChem 2013. [DOI: 10.1002/cctc.201200782] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
33
Kimura H, Nakahara M, Matubayasi N. Solvent Effect on Pathways and Mechanisms for d-Fructose Conversion to 5-Hydroxymethyl-2-furaldehyde: In Situ 13C NMR Study. J Phys Chem A 2013;117:2102-13. [DOI: 10.1021/jp312002h] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
34
Mellone I, Peruzzini M, Rosi L, Mellmann D, Junge H, Beller M, Gonsalvi L. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3. Dalton Trans 2013;42:2495-501. [DOI: 10.1039/c2dt32043f] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
35
Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G. Hydrogen storage: beyond conventional methods. Chem Commun (Camb) 2013;49:8735-51. [DOI: 10.1039/c3cc43836h] [Citation(s) in RCA: 378] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
36
Barnard JH, Wang C, Berry NG, Xiao J. Long-range metal–ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid. Chem Sci 2013. [DOI: 10.1039/c2sc21923a] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
37
Mura MG, Luca LD, Giacomelli G, Porcheddu A. Formic Acid: A Promising Bio-Renewable Feedstock for Fine Chemicals. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200748] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
38
O’Neill BJ, Gürbüz EI, Dumesic JA. Reaction kinetics studies of the conversions of formic acid and butyl formate over carbon-supported palladium in the liquid phase. J Catal 2012. [DOI: 10.1016/j.jcat.2012.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
39
Bi QY, Du XL, Liu YM, Cao Y, He HY, Fan KN. Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions. J Am Chem Soc 2012;134:8926-33. [DOI: 10.1021/ja301696e] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
40
Ting SW, Hu C, Pulleri JK, Chan KY. Heterogeneous Catalytic Generation of Hydrogen from Formic Acid under Pressurized Aqueous Conditions. Ind Eng Chem Res 2012. [DOI: 10.1021/ie2030079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
41
Preti D, Squarcialupi S, Fachinetti G. Conversion of Syngas into Formic Acid. ChemCatChem 2012. [DOI: 10.1002/cctc.201200046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
42
Boddien A, Junge H, Beller M. Katalyse für die chemische Wasserstoffspeicherung. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/nadc.201290008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
43
Huang YB, Dai JJ, Deng XJ, Qu YC, Guo QX, Fu Y. Ruthenium-catalyzed conversion of levulinic acid to pyrrolidines by reductive amination. CHEMSUSCHEM 2011;4:1578-1581. [PMID: 21922683 DOI: 10.1002/cssc.201100344] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Indexed: 05/31/2023]
44
Preti D, Resta C, Squarcialupi S, Fachinetti G. Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angew Chem Int Ed Engl 2011;50:12551-4. [DOI: 10.1002/anie.201105481] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 11/12/2022]
45
Preti D, Resta C, Squarcialupi S, Fachinetti G. Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105481] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
46
Boddien A, Gärtner F, Federsel C, Sponholz P, Mellmann D, Jackstell R, Junge H, Beller M. CO2-“Neutral” Hydrogen Storage Based on Bicarbonates and Formates. Angew Chem Int Ed Engl 2011;50:6411-4. [DOI: 10.1002/anie.201101995] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Indexed: 11/10/2022]
47
Boddien A, Gärtner F, Federsel C, Sponholz P, Mellmann D, Jackstell R, Junge H, Beller M. Kohlenstoffdioxid-neutrale Wasserstoffspeicherung basierend auf Bicarbonaten und Formiaten. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101995] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
48
Himeda Y, Miyazawa S, Hirose T. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage. CHEMSUSCHEM 2011;4:487-493. [PMID: 21271682 DOI: 10.1002/cssc.201000327] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/06/2010] [Indexed: 05/30/2023]
49
Zhou X, Huang Y, Liu C, Liao J, Lu T, Xing W. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature. CHEMSUSCHEM 2010;3:1379-1382. [PMID: 21064176 DOI: 10.1002/cssc.201000199] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
50
Boddien A, Gärtner F, Jackstell R, Junge H, Spannenberg A, Baumann W, Ludwig R, Beller M. ortho-Metalation of Iron(0) Tribenzylphosphine Complexes: Homogeneous Catalysts for the Generation of Hydrogen from Formic Acid. Angew Chem Int Ed Engl 2010;49:8993-6. [DOI: 10.1002/anie.201004621] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA