• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4593037)   Today's Articles (4786)   Subscriber (49319)
For: Arachchige SM, Shaw R, White TA, Shenoy V, Tsui HM, Brewer KJ. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru,  Rh,  Ru photoinitiated electron collector. ChemSusChem 2011;4:514-518. [PMID: 21438156 DOI: 10.1002/cssc.201000399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Indexed: 05/30/2023]
Number Cited by Other Article(s)
1
Manbeck GF, Fujita E, Brewer KJ. Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts. J Am Chem Soc 2017;139:7843-7854. [DOI: 10.1021/jacs.7b02142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
2
Sacrificial electron donor reagents for solar fuel production. CR CHIM 2017. [DOI: 10.1016/j.crci.2015.11.026] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
3
Stoll T, Castillo CE, Kayanuma M, Sandroni M, Daniel C, Odobel F, Fortage J, Collomb MN. Photo-induced redox catalysis for proton reduction to hydrogen with homogeneous molecular systems using rhodium-based catalysts. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
4
Rogers HM, Arachchige SM, Brewer KJ. Enhancement of Solar Fuel Production Schemes by Using a Ru,Rh,Ru Supramolecular Photocatalyst Containing Hydroxide Labile Ligands. Chemistry 2015;21:16948-54. [DOI: 10.1002/chem.201502863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/06/2022]
5
Manbeck GF, Canterbury T, Zhou R, King S, Nam G, Brewer KJ. Electrocatalytic H2 Evolution by Supramolecular RuII–RhIII–RuII Complexes: Importance of Ligands as Electron Reservoirs and Speciation upon Reduction. Inorg Chem 2015;54:8148-57. [DOI: 10.1021/acs.inorgchem.5b01536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Soman S. Molecular Systems for Solar H2: Path to a Renewable Future. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2014.979285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
7
Crabtree RH. Deactivation in Homogeneous Transition Metal Catalysis: Causes, Avoidance, and Cure. Chem Rev 2014;115:127-50. [DOI: 10.1021/cr5004375] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
8
Knoll JD, Higgins SLH, White TA, Brewer KJ. Subunit Variation to Uncover Properties of Polyazine-Bridged Ru(II), Pt(II) Supramolecules with Low Lying Charge Separated States Providing Insight into the Functioning as H2O Reduction Photocatalysts to Produce H2. Inorg Chem 2013;52:9749-60. [DOI: 10.1021/ic4004406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Photoinitiated electron collection in polyazine chromophores coupled to water reduction catalysts for solar H2 production. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.10.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
10
Halpin Y, Pryce MT, Rau S, Dini D, Vos JG. Recent progress in the development of bimetallic photocatalysts for hydrogen generation. Dalton Trans 2013;42:16243-54. [DOI: 10.1039/c3dt52319e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Artero V, Fontecave M. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem Soc Rev 2012;42:2338-56. [PMID: 23165230 DOI: 10.1039/c2cs35334b] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
12
Schulz M, Karnahl M, Schwalbe M, Vos JG. The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
13
Hansen S, Klahn M, Beweries T, Rosenthal U. An intermolecular heterobimetallic system for photocatalytic water reduction. CHEMSUSCHEM 2012;5:656-660. [PMID: 22422641 DOI: 10.1002/cssc.201100794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 05/31/2023]
14
Eckenhoff WT, Eisenberg R. Molecular systems for light driven hydrogen production. Dalton Trans 2012;41:13004-21. [DOI: 10.1039/c2dt30823a] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
15
White TA, Higgins SLH, Arachchige SM, Brewer KJ. Efficient Photocatalytic Hydrogen Production in a Single-Component System Using Ru,Rh,Ru Supramolecules Containing 4,7-Diphenyl-1,10-Phenanthroline. Angew Chem Int Ed Engl 2011;50:12209-13. [DOI: 10.1002/anie.201105170] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/05/2011] [Indexed: 11/09/2022]
16
White TA, Higgins SLH, Arachchige SM, Brewer KJ. Efficient Photocatalytic Hydrogen Production in a Single-Component System Using Ru,Rh,Ru Supramolecules Containing 4,7-Diphenyl-1,10-Phenanthroline. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
17
White TA, Whitaker BN, Brewer KJ. Discovering the Balance of Steric and Electronic Factors Needed To Provide a New Structural Motif for Photocatalytic Hydrogen Production from Water. J Am Chem Soc 2011;133:15332-4. [DOI: 10.1021/ja206782k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Knoll JD, Arachchige SM, Wang G, Rangan K, Miao R, Higgins SLH, Okyere B, Zhao M, Croasdale P, Magruder K, Sinclair B, Wall C, Brewer KJ. Electrochemical, Spectroscopic, and Photophysical Properties of Structurally Diverse Polyazine-Bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) Supramolecular Motifs. Inorg Chem 2011;50:8850-60. [DOI: 10.1021/ic200793f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA