1
|
Zhao Z, Zhang Z, Xu Q, Jia S, Wang Y, Yuan W, Liu M, Liu H, Meng Q, Zhang P, Chen B, Yang H, Han B. Aerobic Ammoxidation of Cyclic Ketones to Dinitrile Products with Copper-Based Catalysts. J Am Chem Soc 2025; 147:1155-1161. [PMID: 39699000 PMCID: PMC11726552 DOI: 10.1021/jacs.4c14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Adiponitrile (ADN) has wide applications, especially in the polymer industry. With the substantial and increasing global demand for ADN, effective production of ADN using safe and abundant starting materials is highly desirable but very challenging. Herein, we discovered that CuBr, combined with 1,10-phenanthroline (phen), could effectively promote the ammoxidation reaction of cyclohexanone to ADN with a yield of >99% using aqueous ammonia as the nitrogen source and O2 as the terminal oxidant under mild reaction conditions (80 °C, 5 atm O2). Moreover, cyclic ketones with various carbon numbers and substituent groups could also be converted into the corresponding dinitrile products with high yields. A detailed mechanistic study revealed that the reaction proceeded through a radical-mediated pathway, and the reason for the high selectivity to ADN was discussed. This study offers a new, simple, and cost-effective route to produce ADN and other dinitrile products.
Collapse
Affiliation(s)
- Ziwei Zhao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Zhanrong Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Qingling Xu
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Shunhan Jia
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Wenli Yuan
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Mingyang Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
| | - Huizhen Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Qinglei Meng
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Pei Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Bingfeng Chen
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Haijun Yang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid and Interface and Thermodynamics, CAS Research/Education Center
for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, State Key
Laboratory of Petroleum Molecular & Process Engineering, School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
3
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
4
|
Ding GR, Wang YF, Duan GY, Fan YQ, Xu BH. Adjustment of W-O-Zr Boundaries Boosts Efficient Nitrilation of Dimethyl Adipate with Ammonia on WO x/ZrO 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3633-3643. [PMID: 36598181 DOI: 10.1021/acsami.2c18908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, a tungstated zirconia (WOx/ZrO2) catalyst was developed for the continuous synthesis of adiponitrile (ADN) by gas-phase nitrilation of dimethyl adipate (DMA) with NH3. The highest TOFADN could be reached on WOx/ZrO2 bearing ∼1D WOx species (highly dispersed and discontinuous status) at the surface, which, however, delivered the poorest selectivity toward nitrilation (SADN+MCP). In comparison, both efficient and selective transformation of DMA to ADN was achieved by fabricating WOx/ZrO2 with continuously distributed oligomeric WOx species (∼2D) at the surface, either by varying the dosage of the W-reagent in the preparation of WOx(m)/ZrO2 or by doping a proper amount of the Mn element into WOx(5.0)/ZrO2, bearing WO3 NPs. Furthermore, the in situ diffuse reflectance infrared Fourier transform spectroscopy investigations of both independent and competitive adsorptions of ester functionality and NH3 over W-O-Zr, W-O-W, and Zr-O-Zr boundaries at the surface clarified the synergistic effect of these species in the activation of DMA/NH3 and thereby nitrilation.
Collapse
Affiliation(s)
- Guang-Rong Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- College of Chemistry and Chemical Engineering, School of Future Technology, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yao-Feng Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Guo-Yi Duan
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - You-Qian Fan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- College of Chemistry and Chemical Engineering, School of Future Technology, University of Chinese Academy of Sciences, Beijing100049, China
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
5
|
Baumgarten N, Etzold BJM, Magomajew J, Ziogas A. Scalable Microreactor Concept for the Continuous Kolbe Electrolysis of Carboxylic Acids Using Aqueous Electrolyte. ChemistryOpen 2022; 11:e202200171. [PMID: 36200517 PMCID: PMC9535501 DOI: 10.1002/open.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The Kolbe electrolysis is a promising reaction to combine the usage of electrons as reagents and the application of renewable generated carboxylic acids as raw materials producing value added chemicals. Within this study, the electrolysis was conducted in a specially developed concept electrochemical microreactor and draws the particular attention to continuous operation and reuse of the aqueous electrolyte as well as of the dissolved unreacted feedstock. The electrolysis was conducted in alkaline aqueous solution using n-octanoic acid as model substance. Platinized titanium as anode material in an undivided cell setup was shown to give Kolbe selectivity above 90 %. During the technically relevant conditions of current densities up to 0.6 A cm-2 and overall electrolysis times of up to 3 h, a high electrode stability was observed. Finally, a proof-of-concept continuous operation and the numbering up potential of the ECMR could be demonstrated.
Collapse
Affiliation(s)
- Nils Baumgarten
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAalrich-Weiss-Straße 864287DarmstadtGermany
| | - Bastian J. M. Etzold
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAalrich-Weiss-Straße 864287DarmstadtGermany
| | - Juri Magomajew
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| | - Athanassios Ziogas
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| |
Collapse
|
6
|
Rodrigues RM, Thadathil DA, Ponmudi K, George A, Varghese A. Recent Advances in Electrochemical Synthesis of Nitriles: A Sustainable Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202200081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roopa Margaret Rodrigues
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Keerthana Ponmudi
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Ashlay George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| |
Collapse
|
7
|
Xu XF, Wang YF, Guo T, Luan LK, Liu SS, Xu BH. Synthesis of adiponitrile from dimethyl adipate and ammonia in the vapor-phase over niobium oxide. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00734g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An environmentally benign route leading to adiponitrile (ADN), a nylon-6,6 intermediate, was achieved by direct vapor-phase nitrilation of dimethyl adipate (DMA) with ammonia (NH3) in a fixed-bed reactor.
Collapse
Affiliation(s)
- Xiao-Feng Xu
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yao-Feng Wang
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Guo
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, 100190, Beijing, China
- Tianjin University of Science and Technology, 300222, Tianjin, China
| | - Li-Kun Luan
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shan-Shan Liu
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, 100190, Beijing, China
- Zhengzhou University, 450001, Zhengzhou, China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
8
|
Zhu XX, Wang HQ, Li CG, Xu XL, Xu J, Dai JJ, Xu HJ. Electrochemical Trifluoromethylation of Thiophenols with Sodium Trifluoromethanesulfinate. J Org Chem 2021; 86:16114-16120. [PMID: 33416327 DOI: 10.1021/acs.joc.0c02659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We developed an electrochemical trifluoromethylation of thiophenols without the use of metal catalysts and oxidants. This reaction features mild reaction conditions, readily available substrate, as well as moderate to good yields. In addition, this protocol can be easily scaled up with moderate efficiency.
Collapse
Affiliation(s)
- Xing-Xing Zhu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huai-Qin Wang
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chen-Guang Li
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiao-Lan Xu
- School of Medical Science, Anhui Medical University, Hefei 230032, China
| | - Jun Xu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian-Jun Dai
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
9
|
Zhao J, Wang D, Li Y. Proteins in dried distillers' grains with solubles: A review of animal feed value and potential non‐food uses. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jikai Zhao
- Department of Biological and Agricultural Engineering Kansas State University Manhattan Kansas USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering Kansas State University Manhattan Kansas USA
| | - Yonghui Li
- Department of Grain Science and Industry Kansas State University Manhattan Kansas USA
| |
Collapse
|
10
|
Lee J, Lee Y, Kim S, Kwon EE, Lin KYA. Catalytic production of hexamethylenediamine from renewable feedstocks. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0725-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Shi X, Ye X, Zhong H, Wang T, Jin F. Sustainable nitrogen-containing chemicals and materials from natural marine resources chitin and microalgae. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Harnisch F, Morejón MC. Hydrogen from Water is more than a Fuel: Hydrogenations and Hydrodeoxygenations for a Biobased Economy. CHEM REC 2021; 21:2277-2289. [PMID: 33734561 DOI: 10.1002/tcr.202100034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022]
Abstract
Worldwide a hydrogen-based economy is on the political agenda. Its centre forms molecular hydrogen (H2 ) that should serve mainly as energy carrier and fuel. However, currently and foreseeable in the future H2 is playing its main role as reactant in the chemical industry. Electrolytic generation and storage of H2 gas is energy demanding and may hardly become economically at the large scale. We argue that in the overall transition towards an economy that is based on biomolecules and CO2 as carbon feedstock electrochemical hydrogenations and hydrodeoxygenations in aqueous solutions need to be moved in the centre. Departing from the well-known fact that electrochemistry allows creating reactive hydrogen species from water, i. e. hydrogen in statu nascendi (H. ), at ambient temperature and pressure we illustrate the existing diversity of reactions based thereon. We focus on examples of model compounds from thermal biomass pretreatment and products from real thermal biomass pretreatment (bio-oil). Consequently, we advocate that electrochemical hydrogenations and hydrodeoxygenations have to be further explored and interweaved into existing process lines.
Collapse
Affiliation(s)
- Falk Harnisch
- Department of Environmental Microbiology, UFZ - Helmholtz-Centre for Environmental Research, 04318, Leipzig, Germany E-mail: Falk Harnisch
| | - Micjel Chávez Morejón
- Department of Environmental Microbiology, UFZ - Helmholtz-Centre for Environmental Research, 04318, Leipzig, Germany E-mail: Falk Harnisch
| |
Collapse
|
13
|
Guo F, You J, Wu W, Yu Y, Jing B, Liu B. Study on the Cyanide Substitution Reaction of Acetone Cannolhydrin as Cyanogen Source. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc20210203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Meyers J, Kurig N, Gohlke C, Valeske M, Panitz S, Holzhäuser FJ, Palkovits R. Intramolecular Biradical Recombination of Dicarboxylic Acids to Unsaturated Compounds: A New Approach to an Old Kolbe Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.202001256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jérôme Meyers
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Nils Kurig
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Clara Gohlke
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Moritz Valeske
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Sinan Panitz
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - F. Joschka Holzhäuser
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Regina Palkovits
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
15
|
Affiliation(s)
- Shi-Hui Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Akhade SA, Singh N, Gutiérrez OY, Lopez-Ruiz J, Wang H, Holladay JD, Liu Y, Karkamkar A, Weber RS, Padmaperuma AB, Lee MS, Whyatt GA, Elliott M, Holladay JE, Male JL, Lercher JA, Rousseau R, Glezakou VA. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chem Rev 2020; 120:11370-11419. [PMID: 32941005 DOI: 10.1021/acs.chemrev.0c00158] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sustainable energy generation calls for a shift away from centralized, high-temperature, energy-intensive processes to decentralized, low-temperature conversions that can be powered by electricity produced from renewable sources. Electrocatalytic conversion of biomass-derived feedstocks would allow carbon recycling of distributed, energy-poor resources in the absence of sinks and sources of high-grade heat. Selective, efficient electrocatalysts that operate at low temperatures are needed for electrocatalytic hydrogenation (ECH) to upgrade the feedstocks. For effective generation of energy-dense chemicals and fuels, two design criteria must be met: (i) a high H:C ratio via ECH to allow for high-quality fuels and blends and (ii) a lower O:C ratio in the target molecules via electrochemical decarboxylation/deoxygenation to improve the stability of fuels and chemicals. The goal of this review is to determine whether the following questions have been sufficiently answered in the open literature, and if not, what additional information is required:(1)What organic functionalities are accessible for electrocatalytic hydrogenation under a set of reaction conditions? How do substitutions and functionalities impact the activity and selectivity of ECH?(2)What material properties cause an electrocatalyst to be active for ECH? Can general trends in ECH be formulated based on the type of electrocatalyst?(3)What are the impacts of reaction conditions (electrolyte concentration, pH, operating potential) and reactor types?
Collapse
Affiliation(s)
- Sneha A Akhade
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nirala Singh
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Juan Lopez-Ruiz
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jamie D Holladay
- TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Yue Liu
- TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Abhijeet Karkamkar
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Robert S Weber
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Asanga B Padmaperuma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Greg A Whyatt
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Michael Elliott
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johnathan E Holladay
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jonathan L Male
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Roger Rousseau
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
17
|
Pollok D, Waldvogel SR. Electro-organic synthesis - a 21 st century technique. Chem Sci 2020; 11:12386-12400. [PMID: 34123227 PMCID: PMC8162804 DOI: 10.1039/d0sc01848a] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
The severe limitations of fossil fuels and finite resources influence the scientific community to reconsider chemical synthesis and establish sustainable techniques. Several promising methods have emerged, and electro-organic conversion has attracted particular attention from international academia and industry as an environmentally benign and cost-effective technique. The easy application, precise control, and safe conversion of substrates with intermediates only accessible by this method reveal novel pathways in synthetic organic chemistry. The popularity of electricity as a reagent is accompanied by the feasible conversion of bio-based feedstocks to limit the carbon footprint. Several milestones have been achieved in electro-organic conversion at rapid frequency, which have opened up various perspectives for forthcoming processes.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| |
Collapse
|
18
|
Abstract
With water providing a highly favored solution environment for industrial processes (and in biological processes), it is interesting to develop water-based electrolysis processes for the synthesis and conversion of organic and biomass-based molecules. Molecules with low solubility in aqueous media can be dispersed/solubilized (i) by physical dispersion tools (e.g., milling, power ultrasound, or high-shear ultraturrax processing), (ii) in some cases by pressurization/supersaturation (e.g., for gases), (iii) by adding cosolvents or "carriers" such as chremophor EL, or (iv) by adding surfactants to generate micelles, microemulsions, and/or stabilized biphasic conditions. This Account examines and compares methodologies to bring the dispersed or multiphase system into contact with an electrode. Both the microscopic process based on individual particle impact and the overall electro-organic transformation are of interest. Distinct mechanistic cases for multiphase redox processes are considered. Most traditional electro-organic transformations are performed in homogeneous solution with reagents, products, electrolyte, and possibly mediators or redox catalysts all in the same (usually organic) solution phase. This may lead to challenges in the product separation step and in the reuse of solvents and electrolytes. When aqueous electrolyte media are used, reagents and products (or even the electrolyte) may be present as microdroplets or nanoparticles. Redox transformations then occur during interfacial "collisions" under multiphase conditions or within a reaction layer when a redox mediator is present. Benefits of this approach can be (i) the use of a highly conducting aqueous electrolyte, (ii) simple separation of products and reuse of the electrolyte, (iii) phase-transfer conditions in redox catalysis, (iv) new reaction pathways, and (v) improved sustainability. In some cases, a surface phase or phase boundary processes can lead to interesting changes in reaction pathways. Controlling the reaction zone within the multiphase redox system poses a challenge, and methods based on microchannel flow reactors have been developed to provide a higher degree of control. However, detrimental effects in microchannel systems are also observed, in particular for limited current densities (which can be very low in microchannel multiphase flow) or in the development of technical solutions for scale-up of multiphase redox transformations. This Account describes physical approaches (and reactor designs) to bring multiphase redox systems into effective contact with the electrode surface as well as cases of important electro-organic multiphase transformations. Mechanistic cases considered are "impacts" by microdroplets or particles at the electrode, effects of dissolved intermediates or redox mediators, and effects of dissolved redox catalysts. These mechanistic cases are discussed for important multiphase transformations for gaseous, liquid, and solid dispersed phases. Processes based on mesoporous membranes and hydrogen-permeable palladium membranes are discussed.
Collapse
Affiliation(s)
- Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Jay D. Wadhawan
- School of Engineering, University of Hull, Cottingham Road, Kingston upon Hull, North Humberside HU6 7RX, U.K
| |
Collapse
|
19
|
De Schouwer F, Claes L, Vandekerkhove A, Verduyckt J, De Vos DE. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. CHEMSUSCHEM 2019; 12:1272-1303. [PMID: 30667150 DOI: 10.1002/cssc.201802418] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Protein-rich biomass provides a valuable feedstock for the chemical industry. This Review describes every process step in the value chain from protein waste to chemicals. The first part deals with the physicochemical extraction of proteins from biomass, hydrolytic degradation to peptides and amino acids, and separation of amino acid mixtures. The second part provides an overview of physical and (bio)chemical technologies for the production of polymers, commodity chemicals, pharmaceuticals, and other fine chemicals. This can be achieved by incorporation of oligopeptides into polymers, or by modification and defunctionalization of amino acids, for example, their reduction to amino alcohols, decarboxylation to amines, (cyclic) amides and nitriles, deamination to (di)carboxylic acids, and synthesis of fine chemicals and ionic liquids. Bio- and chemocatalytic approaches are compared in terms of scope, efficiency, and sustainability.
Collapse
Affiliation(s)
- Free De Schouwer
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Laurens Claes
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Annelies Vandekerkhove
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| |
Collapse
|
20
|
Röckl JL, Imada Y, Chiba K, Franke R, Waldvogel SR. Dehydrogenative Anodic Cyanation Reaction of Phenols in Benzylic Positions. ChemElectroChem 2019. [DOI: 10.1002/celc.201801727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Johannes L. Röckl
- Institute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| | - Yasushi Imada
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| | - Kazuhiro Chiba
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Str. 1 45772 Marl Germany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum Universitätstraße 150 44801 Bochum Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| |
Collapse
|
21
|
Blanco DE, Dookhith AZ, Modestino MA. Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00262b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical production of Adiponitrile (ADN) is a critical step in the manufacture of Nylon 6,6. This study provides a thorough understanding of the factors affecting this process, leading to design guidelines that help maximize selectivity, ADN production rate, and energy productivity of the system.
Collapse
|
22
|
Chen Z, Jiang S, Wang H, Wang L, Wei D. Switching the regioselectivity of two nitrilases toward succinonitrile by mutating the active center pocket key residues through a semi-rational engineering. Chem Commun (Camb) 2019; 55:2948-2951. [DOI: 10.1039/c8cc10110h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alteration of two key residues in two nitrilases switched their regioselectivity, which lays the foundation for future work on regioselective nitrilase.
Collapse
Affiliation(s)
- Zhi Chen
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuiqing Jiang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Liuzhu Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
23
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. Angew Chem Int Ed Engl 2018; 57:6018-6041. [PMID: 29359378 PMCID: PMC6001547 DOI: 10.1002/anie.201712732] [Citation(s) in RCA: 636] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/11/2022]
Abstract
The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly important. The direct conversion of renewables, which have previously mainly been incinerated, is of increasing interest. This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field.
Collapse
Affiliation(s)
- Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Anton Wiebe
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| |
Collapse
|
24
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Electrifying Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:5594-5619. [PMID: 29292849 PMCID: PMC5969240 DOI: 10.1002/anie.201711060] [Citation(s) in RCA: 866] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/29/2017] [Indexed: 11/21/2022]
Abstract
The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.
Collapse
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
25
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712732] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sabine Möhle
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
| | - Anton Wiebe
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| |
Collapse
|
26
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Elektrifizierung der organischen Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711060] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
27
|
Yan M, Kawamata Y, Baran PS. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem Rev 2017; 117:13230-13319. [PMID: 28991454 PMCID: PMC5786875 DOI: 10.1021/acs.chemrev.7b00397] [Citation(s) in RCA: 2098] [Impact Index Per Article: 262.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemistry represents one of the most intimate ways of interacting with molecules. This review discusses advances in synthetic organic electrochemistry since 2000. Enabling methods and synthetic applications are analyzed alongside innate advantages as well as future challenges of electroorganic chemistry.
Collapse
Affiliation(s)
| | | | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Verduyckt J, De Vos DE. Controlled defunctionalisation of biobased organic acids. Chem Commun (Camb) 2017; 53:5682-5693. [DOI: 10.1039/c7cc01380a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Considerable progress has been made in the field of hydrogenation, decarboxylation and deamination of both citric and amino acids to valuable chemicals, which is why they should be (re)considered as valid biobased platform chemicals.
Collapse
Affiliation(s)
- Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- Leuven Chem&Tech
- 3001 Heverlee
| | - Dirk E. De Vos
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- Leuven Chem&Tech
- 3001 Heverlee
| |
Collapse
|
29
|
Hirasawa T, Shimizu H. Glutamic Acid Fermentation: Discovery of Glutamic Acid-Producing Microorganisms, Analysis of the Production Mechanism, Metabolic Engineering, and Industrial Production Process. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Takashi Hirasawa
- Tokyo Institute of Technology; School of Life Science and Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8501 Japan
| | - Hiroshi Shimizu
- Osaka University; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
30
|
Claes L, Matthessen R, Rombouts I, Stassen I, De Baerdemaeker T, Depla D, Delcour JA, Lagrain B, De Vos DE. Bio-based nitriles from the heterogeneously catalyzed oxidative decarboxylation of amino acids. CHEMSUSCHEM 2015; 8:345-352. [PMID: 25470619 DOI: 10.1002/cssc.201402801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/21/2014] [Indexed: 06/04/2023]
Abstract
The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.
Collapse
Affiliation(s)
- Laurens Claes
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium)
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Claes L, Verduyckt J, Stassen I, Lagrain B, De Vos DE. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles. Chem Commun (Camb) 2015; 51:6528-31. [DOI: 10.1039/c5cc00181a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidative decarboxylation of amino acids into biobased nitriles was performed using molecular oxygen and a supported ruthenium hydroxide-based catalyst. A range of amino acids was successfully oxidized in a salt-free aqueous system under mild conditions.
Collapse
Affiliation(s)
- Laurens Claes
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- 3001 Heverlee
- Belgium
| | - Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- 3001 Heverlee
- Belgium
| | - Ivo Stassen
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- 3001 Heverlee
- Belgium
| | - Bert Lagrain
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- 3001 Heverlee
- Belgium
| | - Dirk E. De Vos
- Centre for Surface Chemistry and Catalysis
- Department of Microbial and Molecular Systems
- KU Leuven – University of Leuven
- 3001 Heverlee
- Belgium
| |
Collapse
|
32
|
Ashikari Y, Kiuchi Y, Takeuchi T, Ueoka K, Suga S, Yoshida JI. Addition of N-Acyliminium Ion Pools to Alkenes Having a Nucleophilic Moiety: Integration of Intermolecular and Intramolecular Reactions. CHEM LETT 2014. [DOI: 10.1246/cl.130947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Yohei Kiuchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Tomoya Takeuchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Koji Ueoka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Seiji Suga
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
33
|
Deng J, Zhang QG, Pan T, Xu Q, Guo QX, Fu Y. Synthesis of biobased succinimide from glutamic acid via silver-catalyzed decarboxylation. RSC Adv 2014. [DOI: 10.1039/c4ra04567j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamic acid was transformed into succinimide in a two step procedure involving a dehydration in water to pyroglutamic acid followed by an oxidative decarboxylation using a silver catalyst.
Collapse
Affiliation(s)
- Jin Deng
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026, China
| | - Qiu-Ge Zhang
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026, China
| | - Tao Pan
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026, China
| | - Qing Xu
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026, China
| | - Qing-Xiang Guo
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026, China
| | - Yao Fu
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026, China
| |
Collapse
|
34
|
Zeng FX, Liu HF, Deng L, Liao B, Pang H, Guo QX. Ionic-liquid-catalyzed efficient transformation of γ-valerolactone to methyl 3-pentenoate under mild conditions. CHEMSUSCHEM 2013; 6:600-603. [PMID: 23468313 DOI: 10.1002/cssc.201200841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Green nylons! Acidic ionic-liquid catalysis for the transformation of γ-valerolactone into methyl 3-pentenoate (M3P) is shown to be performed efficiently under mild conditions. M3P is obtained selectively from a reaction at 170 °C for 3.5 h in the presence of an acidic ionic liquid that has a low vapor pressure, high thermal stability, and excellent catalytic performance. A possible reaction pathway for this conversion is also presented.
Collapse
Affiliation(s)
- Fan-Xin Zeng
- Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Ashikari Y, Nokami T, Yoshida JI. Integration of electrooxidative cyclization and chemical oxidation via alkoxysulfonium ions. Synthesis of exocyclic ketones from alkenes with cyclization. Org Biomol Chem 2013; 11:3322-31. [DOI: 10.1039/c3ob40315g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|