1
|
Yasmin A, Shehzad MA, Wang J, He XD, Ding X, Wang S, Wen Z, Chen C. La 4NiLiO 8-Shielded Layered Cathode Materials for Emerging High-Performance Safe Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:826-835. [PMID: 31799827 DOI: 10.1021/acsami.9b18586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low theoretical capacities of the commercial cathode materials (olivine: ∼170 mA h g-1 and spinel: ∼140 mA h g-1) dictate the need for higher energy density alternates such as nickel-rich (denotes as NCM) materials with a theoretical capacity of ∼270 mA h g-1. However, low conductivity and the bulk degradation after direct contact with liquid electrolytes, especially at temperatures higher than 50 °C, are the biggest issues to resolve for safe use and confident commercialization of the NCM materials. In this context, we first report "La4NiLiO8 shields" to simultaneously boost charge conduction characteristics and circumvent the electrolytic degradation of NCM. Consequently, the La4NiLiO8-shielded LiNi0.5Co0.2Mn0.3O2 (LSN5) not only offers a 4.1× less charge transfer resistance and significantly higher discharge capacity (219.7 mA h g-1) than the nonshielded NCM (187 mA h g-1) and theoretical capacities of commercial cathode materials but also maintains more than 91.7% of capacity retention at 25 °C after 500 cycles and 84.2% at 60 °C after 200 cycles. In contrast, the nonshielded NCM cathodes can only provide 58.9 and 45.5% capacity retentions at corresponding test temperatures and performance cycles. The acquired excellent electrochemical performance and battery stability at both the ambient and high-temperature conductions infer great importance of the novel La4NiLiO8 shields in developing high-performance safe secondary batteries.
Collapse
Affiliation(s)
- Aqsa Yasmin
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Advanced Materials and Membrane Technology Centre, Department of Polymer and Process Engineering , University of Engineering and Technology , Lahore , Punjab 54890 , Pakistan
| | - Muhammad Aamir Shehzad
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Advanced Materials and Membrane Technology Centre, Department of Polymer and Process Engineering , University of Engineering and Technology , Lahore , Punjab 54890 , Pakistan
| | - Junru Wang
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiao-Dong He
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiang Ding
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shuo Wang
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Zhaoyin Wen
- Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Chunhua Chen
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
2
|
Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00053-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
The demand for lithium-ion batteries (LIBs) with high mass-specific capacities, high rate capabilities and long-term cyclabilities is driving the research and development of LIBs with nickel-rich NMC (LiNixMnyCo1−x−yO2, $$x \geqslant 0.5$$x⩾0.5) cathodes and graphite (LixC6) anodes. Based on this, this review will summarize recently reported and widely recognized studies of the degradation mechanisms of Ni-rich NMC cathodes and graphite anodes. And with a broad collection of proposed mechanisms on both atomic and micrometer scales, this review can supplement previous degradation studies of Ni-rich NMC batteries. In addition, this review will categorize advanced mitigation strategies for both electrodes based on different modifications in which Ni-rich NMC cathode improvement strategies involve dopants, gradient layers, surface coatings, carbon matrixes and advanced synthesis methods, whereas graphite anode improvement strategies involve surface coatings, charge/discharge protocols and electrolyte volume estimations. Electrolyte components that can facilitate the stabilization of anodic solid electrolyte interfaces are also reviewed, and trade-offs between modification techniques as well as controversies are discussed for a deeper understanding of the mitigation strategies of Ni-rich NMC/graphite LIBs. Furthermore, this review will present various physical and electrochemical diagnostic tools that are vital in the elucidation of degradation mechanisms during operation to supplement future degradation studies. Finally, this review will summarize current research focuses and propose future research directions.
Graphic Abstract
The demand for lithium-ion batteries (LIBs) with high mass specific capacities, high rate capabilities and longterm cyclabilities is driving the research and development of LIBs with nickel-rich NMC (LiNixMnyCo1−x−yO2, x ≥ 0.5) cathodes and graphite (LixC6) anodes. Based on this, this review will summarize recently reported and widely recognized studies of the degradation mechanisms of Ni-rich NMC cathodes and graphite anodes. And with a broad collection of proposed mechanisms on both atomic and micrometer scales, this review can supplement previous degradation studies of Ni-rich NMC batteries. In addition, this review will categorize advanced mitigation strategies for both electrodes based on different modifications in which Ni-rich NMC cathode improvement strategies involve dopants, gradient layers, surface coatings, carbon matrixes and advanced synthesis methods, whereas graphite anode improvement strategies involve surface coatings, charge/discharge protocols and electrolyte volume estimations. Electrolyte components that can facilitate the stabilization of anodic solid-electrolyte interfaces (SEIs) are also reviewed and tradeoffs between modification techniques as well as controversies are discussed for a deeper understanding of the mitigation strategies of Ni-rich NMC/graphite LIBs. Furthermore, this review will present various physical and electrochemical diagnostic tools that are vital in the elucidation of degradation mechanisms during operation to supplement future degradation studies. Finally, this review will summarize current research focuses and propose future research directions.
Collapse
|
3
|
Wu F, Li Q, Chen L, Lu Y, Su Y, Bao L, Chen R, Chen S. Use of Ce to Reinforce the Interface of Ni-Rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Materials for Lithium-Ion Batteries under High Operating Voltage. CHEMSUSCHEM 2019; 12:935-943. [PMID: 30480875 DOI: 10.1002/cssc.201802304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Nickel-rich cathode materials are among the most promising cathode materials for high-energy lithium-ion batteries. However, their structural and thermodynamic stability, cycle and rate performances still need to be further improved. In this study, the rare earth element Ce is employed to reinforce the interface of Ni-rich cathode materials both internally and externally. High-valence Ce4+ can easily cause the oxidization of Ni2+ to Ni3+ when doped into the material owing to its strong oxidation performance, thus reducing Li+ /Ni2+ mixing. In addition, the inert Ce3+ ions in transition metal slabs with strong Ce-O bonds can maintain the layered structure at high delithiation state. Furthermore, when the calcination temperature during synthesis is above 500 °C, a CeO2 coating layer will form, which can protect the electrode from erosion by the electrolyte and alleviate the increasing resistance during cycling. The modified Ni-rich materials fabricated with an erosion-resistant CeO2 layer outside and stronger Ce-O bonds inside with reduced Li+ /Ni2+ mixing exhibit excellent electrochemical properties, especially at high operating voltages, for example, the 50th capacity retention at 0.2 C within 2.75-4.5 V is improved from 89.8 % to 99.2 % after the modification.
Collapse
Affiliation(s)
- Feng Wu
- School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qing Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lai Chen
- School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yun Lu
- School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuefeng Su
- School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liying Bao
- School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Renjie Chen
- School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shi Chen
- School of Materials Science and Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
4
|
Zhou S, Mei T, Wang X, Qian Y. Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries. NANOSCALE 2018; 10:17435-17455. [PMID: 30207360 DOI: 10.1039/c8nr04842h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing high-performance lithium ion batteries (LIBs) requires optimization of every battery component. Currently, the main problems lie in the mismatch of electrode capacities, especially the excessively low capacity of cathodes compared with that of anodes. Due to the anisotropy of the crystal structure, different crystal planes play different roles in the transmission of lithium ions. Among these, the {010} facets of layered-structure materials, the (110) planes of spinel cathodes and the (010) planes of olivine cathodes can provide open surface structures, which furnish express channels for the rapid and efficient transmission of lithium ions, leading to enhanced rate performance. However, due to the high-energy surfaces of these crystal planes, they tend to disappear in the synthetic process, forming thermodynamic equilibrium products dominated by low-energy and electrochemically-inactive planes. From the structure design of the material itself, preparing functional materials with specific morphologies and crystal structures is considered to be the most effective way to improve the cyclability and rate performance of LIB cathodes. In this review, we highlight the latest developments in selectively exposing the crystal planes of LIB cathode materials. The synthetic method, the corresponding electrochemical performance, especially the rate capability, and the growth mechanism have been systematically summarized for layered-structure cathodes of LiCoO2, LiNixCoyMn1-x-yO2 and Li2MnO3·LiMO2, spinel cathodes of LiMn2O4 and LiNi0.5Mn1.5O4, and olivine cathodes of LiFePO4. This in-depth discussion and understanding is beneficial for the rational design of well-performing LIB cathodes and can provide direction and perspectives for future work.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | | | | | | |
Collapse
|
5
|
Antonopoulos BK, Stock C, Maglia F, Hoster HE. Solid electrolyte interphase: Can faster formation at lower potentials yield better performance? Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Liang L, Sun X, Wu C, Hou L, Sun J, Zhang X, Yuan C. Nasicon-Type Surface Functional Modification in Core-Shell LiNi 0.5Mn 0.3Co 0.2O 2@NaTi 2(PO 4) 3 Cathode Enhances Its High-Voltage Cycling Stability and Rate Capacity toward Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5498-5510. [PMID: 29357219 DOI: 10.1021/acsami.7b15808] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface modifications are established well as efficient methodologies to enhance comprehensive Li-storage behaviors of the cathodes and play a significant role in cutting edge innovations toward lithium-ion batteries (LIBs). Herein, we first logically devised a pilot-scale coating strategy to integrate solid-state electrolyte NaTi2(PO4)3 (NTP) and layered LiNi0.5Mn0.3Co0.2O2 (NMC) for smart construction of core-shell NMC@NTP cathodes. The Nasicon-type NTP nanoshell with exceptional ion conductivity effectively suppressed gradual encroachment and/or loss of electroactive NMC, guaranteed stable phase interfaces, and meanwhile rendered small sur-/interfacial electron/ion-diffusion resistance. By benefiting from immanently promoting contributions of the nano-NTP coating, the as-fabricated core-shell NMC@NTP architectures were competitively endowed with superior high-voltage cyclic stabilities and rate capacities within larger electrochemical window from 3.0 to 4.6 V when utilized as advanced cathodes for advanced LIBs. More meaningfully, the appealing electrode design concept proposed here will exert significant impact upon further constructing other high-voltage Ni-based cathodes for high-energy/power LIBs.
Collapse
Affiliation(s)
- Longwei Liang
- School of Material Science and Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Xuan Sun
- School of Material Science and Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Chen Wu
- School of Material Science and Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Linrui Hou
- School of Material Science and Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Jinfeng Sun
- School of Material Science and Engineering, University of Jinan , Jinan 250022, P. R. China
| | - Xiaogang Zhang
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, P. R. China
| | - Changzhou Yuan
- School of Material Science and Engineering, University of Jinan , Jinan 250022, P. R. China
| |
Collapse
|
7
|
Lu W, Liang L, Sun X, Sun X, Wu C, Hou L, Sun J, Yuan C. Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E325. [PMID: 29036916 PMCID: PMC5666490 DOI: 10.3390/nano7100325] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 12/05/2022]
Abstract
Electrode materials and electrolytes play a vital role in device-level performance of rechargeable Li-ion batteries (LIBs). However, electrode structure/component degeneration and electrode-electrolyte sur-/interface evolution are identified as the most crucial obstacles in practical applications. Thanks to its congenital advantages, atomic layer deposition (ALD) methodology has attracted enormous attention in advanced LIBs. This review mainly focuses upon the up-to-date progress and development of the ALD in high-performance LIBs. The significant roles of the ALD in rational design and fabrication of multi-dimensional nanostructured electrode materials, and finely tailoring electrode-electrolyte sur-/interfaces are comprehensively highlighted. Furthermore, we clearly envision that this contribution will motivate more extensive and insightful studies in the ALD to considerably improve Li-storage behaviors. Future trends and prospects to further develop advanced ALD nanotechnology in next-generation LIBs were also presented.
Collapse
Affiliation(s)
- Wei Lu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Longwei Liang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Xuan Sun
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Xiaofei Sun
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Chen Wu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Linrui Hou
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Jinfeng Sun
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Changzhou Yuan
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
8
|
Chen R, Zhao T, Zhang X, Li L, Wu F. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. NANOSCALE HORIZONS 2016; 1:423-444. [PMID: 32260708 DOI: 10.1039/c6nh00016a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In recent years, the global climate has further deteriorated because of the excessive consumption of traditional energy sources. The replacement of traditional fossil fuels with limited reserves by alternative energy sources has become one of the main strategies to alleviate the increasingly serious environmental issues. As a sustainable and promising store of renewable energy, lithium-ion batteries have replaced other types of batteries for many small-scale consumer devices. Notwithstanding their worldwide applications, it has become abundantly clear that the design and fabrication of electrode materials is urgently required to adapt to meet the growing global demand for energy and the power densities needed to make electric vehicles fully commercially viable. To dramatically enhance battery performance, further advances in materials chemistry are essential, especially in novel nanomaterials chemistry. The construction of nanostructured cathode materials by reducing particle size can boost electrochemical performance. The present review is intended to provide readers with a better understanding of the unique contribution of various nanoarchitectures to lithium-ion batteries over the last decade. Nanostructured cathode materials with different dimensions (0D, 1D, 2D, and 3D), morphologies (hollow, core-shell, etc.), and composites (mainly graphene-based composites) are highlighted, aiming to unravel the opportunities for the development of future-generation lithium-ion batteries. The advantages and challenges of nanomaterials are also addressed in this review. We hope to simulate many more extensive and insightful studies on nanoarchitectonic cathode materials for advanced lithium-ion batteries with desirable performance.
Collapse
Affiliation(s)
- Renjie Chen
- School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
9
|
Liang C, Liu L, Jia Z, Dai C, Xiong Y. Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to particle size effect on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Multicore-shell carbon-coated lithium manganese phosphate and lithium vanadium phosphate composite material with high capacity and cycling performance for lithium-ion battery. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat Commun 2015; 6:6865. [DOI: 10.1038/ncomms7865] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/07/2015] [Indexed: 12/25/2022] Open
|