1
|
Chen Y, Zhu L, Wu J, Wang K, Ge T. Feasibility and Effectivity of an Amine-Grafted Alumina Adsorbent for Direct Air Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26166-26178. [PMID: 39604211 DOI: 10.1021/acs.langmuir.4c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Direct air capture (DAC) has been identified as a necessary negative emission technology (NET) to solve global warming. DAC methods have been divided into two major types: solvent absorption and sorbent adsorption. Aqueous amine absorption is the major method in postcombustion carbon capture, not in DAC because contactors blow large volumes of air over the solvent, which results in high evaporation of solvents. Solid amine adsorption has been one of the primary methods of DAC due to its low volatility of amine. Therefore, the development of DAC adsorbents is the key to improve CO2 capture efficiency. Nowadays, the research on adsorbents mainly focuses on amine impregnation and grafting. The grafting adsorbents generally have better stability than impregnation adsorbents. Silica is the most common support material for amine-grafted adsorbents. Nonetheless, silica has some defects, such as poor hydrothermal stability, which limits its employment. Alumina is a promising support material with excellent hydrothermal stability, but studies on amine-grafted alumina are still scarce. Herein, a method of 3-[2-(2-aminoethylamino)ethylamino] propyltrimethoxysilane (TRI) grafting onto γ-alumina is presented. The results of this paper suggest that alumina is a potential support material for amine grafting. The CO2 adsorption capacity of the adsorbent is 0.39 mmol g-1 at 400 ppm and 25 °C. The amine-grafted alumina has excellent thermal stability than the amine-impregnation silica adsorbent. Besides, the adsorbent exhibits stable performance during cycles, with the working capacity maintained at 83% of that of the first cycle after 60 cycles. Water adsorption capacity and selectivity indicate that TRI-Al2O3 has good selectivity at high relative humidity. These findings make amine-grafted alumina a promising DAC adsorbent.
Collapse
Affiliation(s)
- Yanlin Chen
- Institute of Refrigeration and Cryogenics, Research Center of Solar Power & Refrigeration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Zhu
- CEEC (Shanghai) System Engineering Co., Ltd., Shanghai 200001, China
| | - Junye Wu
- Institute of Refrigeration and Cryogenics, Research Center of Solar Power & Refrigeration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kuihua Wang
- Institute of Refrigeration and Cryogenics, Research Center of Solar Power & Refrigeration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianshu Ge
- Institute of Refrigeration and Cryogenics, Research Center of Solar Power & Refrigeration, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Potter ME, Cavaye H, Le Brocq JJM, Daemen LL, Cheng Y. Using inelastic neutron scattering spectroscopy to probe CO 2 binding in grafted aminosilanes. Phys Chem Chem Phys 2024; 26:25969-25976. [PMID: 39365254 DOI: 10.1039/d4cp02316a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
While a range of in situ characterisation techniques are available to probe CO2 adsorption processes, inelastic neutron scattering is scarcely used, primarily due to the reliance on hydrogeneous modes. Materials capable of adsorbing CO2, such as solid supported-amines contain a range of C-H and N-H species, which can be probed to explore the adsorption of CO2. Here we show the benefits of using inelastic neutron spectroscopy to probe CO2 adsorption with solid supported-amines, and the complementarity that can be achieved using different world-leading spectrometers.
Collapse
Affiliation(s)
- Matthew E Potter
- Institute for Sustainability, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hamish Cavaye
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
| | - Joshua J M Le Brocq
- Department of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, USA
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, USA
| |
Collapse
|
3
|
Stampi-Bombelli V, Storione A, Grossmann Q, Mazzotti M. On Comparing Packed Beds and Monoliths for CO 2 Capture from Air Through Experiments, Theory, and Modeling. Ind Eng Chem Res 2024; 63:11637-11653. [PMID: 38983186 PMCID: PMC11228921 DOI: 10.1021/acs.iecr.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024]
Abstract
This study compares the performance of amine-functionalized γ-alumina sorbents in the form of 3 mm γ-alumina pellets and of a γ-alumina wash-coated monolith for CO2 capture for direct air capture (DAC). Breakthrough experiments were conducted on the two contactors to analyze the adsorption kinetics and performance for different gas feeds. A constant pattern analysis revealed dominant mass transfer resistances in the gas film and in the pores, with axial dispersion also observed, particularly at higher concentrations. A 1D, physical model was used to fit the experiments and thus to estimate mass transfer and axial dispersion coefficients, which appear to be consistent with the hypotheses derived from constant pattern analysis. A dual kinetic model to describe mass transfer was found to better describe the tail behavior in the monolith, whereas a pseudo-first-order model was sufficient to describe breakthroughs on packed beds. A substantial two-order magnitude decrease in mass transfer coefficients was noted when reducing the feed concentration from 5.6% to 400 ppm CO2, thus underscoring the significant mass transfer limitations observed in DAC. Comparison between the contactors revealed notably higher mass transfer coefficients in the monolith compared to the packed beds, which are attributed to shorter diffusion lengths and lower equilibrium capacity. While the faster mass transfer coefficients observed in the monolith experiments led to reduced specific energy consumption and increased adsorption productivity compared to the packed bed at 400 ppm, no significant improvement was observed for the same process at the higher concentration of 5.6% CO2 in the feed. This finding highlights the need to tailor the contactor design to the specific gas separation requirements. This research contributes to the understanding and quantification of mass transfer kinetics at DAC concentrations in both packed bed and monolith contactors. It demonstrates the crucial role of the contactor in DAC systems and the importance of optimizing the adsorption step to enhance productivity and DAC performance.
Collapse
Affiliation(s)
| | - Alba Storione
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum-University of Bologna, via Terracini 28, Bologna 40131, Italy
| | - Quirin Grossmann
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
4
|
Narayanan P, Guntupalli P, Lively RP, Jones CW. Alumina Incorporation in Self-Supported Poly(ethylenimine) Sorbents for Direct Air Capture. CHEM & BIO ENGINEERING 2024; 1:157-170. [PMID: 38566966 PMCID: PMC10983007 DOI: 10.1021/cbe.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 04/04/2024]
Abstract
Self-supported branched poly(ethylenimine) scaffolds with ordered macropores are synthesized with and without Al2O3 powder additive by cross-linking poly(ethylenimine) (PEI) with poly(ethylene glycol) diglycidyl ether (PEGDGE) at -196 °C. The scaffolds' CO2 uptake performance is compared with a conventional sorbent, i.e., PEI impregnated on an Al2O3 support. PEI scaffolds with Al2O3 additive show narrow pore size distribution and thinner pore walls than alumina-free materials, facilitating higher CO2 uptake at conditions relevant to direct air capture. The PEI scaffold containing 6.5 wt % Al2O3 had the highest CO2 uptake of 1.23 mmol/g of sorbent under 50% RH 400 ppm of CO2 conditions. In situ DRIFT spectroscopy and temperature-programmed desorption experiments show a significant CO2 uptake contribution via physisorption as well as carbamic acid formation, with lower CO2 binding energies in PEI scaffolds relative to conventional PEI sorbents, likely a result of a lower population of primary amines due to the amine cross-linking reactions during scaffold synthesis. The PEI scaffold containing 6.5 wt % Al2O3 is estimated to have the lowest desorption energy penalty under humid conditions, 4.6 GJ/tCO2, among the sorbents studied.
Collapse
Affiliation(s)
- Pavithra Narayanan
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Pranav Guntupalli
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Kim C, Ha Y, Choi M. Design of Amine-Containing Nanoporous Materials for Postcombustion CO 2 Capture from Engineering Perspectives. Acc Chem Res 2023; 56:2887-2897. [PMID: 37824727 DOI: 10.1021/acs.accounts.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
ConspectusCarbon dioxide (CO2) capture and storage (CCS) is a means to enable the continued use of fossil fuels in the short term. In particular, postcombustion CO2 capture has attracted considerable attention because it can be retrofitted into existing power plants and industrial plants. Among various CO2 capture technologies, the absorption of CO2 using aqueous amines has been industrially employed for decades. However, such amine scrubbing technologies have inherent limitations of environmental and health concerns due to volatile amine loss, corrosion, and high energy demands for regeneration. To overcome these limitations, CO2 adsorption using solid adsorbents has emerged as a promising alternative due to its noncorrosiveness and low energy demand. Various amine-containing adsorbents have been synthesized and investigated for postcombustion CO2 capture. These materials are prepared by physically impregnating low-vapor-pressure amine polymers or by chemically grafting amines onto nanoporous materials. A wide variety of amine guests and nanoporous hosts (e.g., SiO2, Al2O3, zeolites, MOFs, and polymers) have been combined to develop advanced CO2 adsorbents.The design of CO2 adsorbents is a multifaceted puzzle that must ultimately consider integration with large-scale CO2 capture processes. Various engineering aspects need to be carefully considered. Unfortunately, a significant proportion of previous studies has primarily focused on the use of novel materials for improving the CO2 adsorption capacity. In this Account, we describe key challenges and solutions to develop energy-efficient and stable amine-containing adsorbents for postcombustion CO2 capture via temperature swing adsorption (TSA). We found that a high CO2 working capacity, often overemphasized in the literature, does not necessarily guarantee a low energy demand for CO2 capture. Suppressing coadsorption of H2O during the CO2 adsorption in humid flue gas is also a significant factor. Amine-containing adsorbents can be degraded through various pathways, including hydrothermal degradation of nanoporous hosts and chemical degradation of amine guests via urea formation and oxidation. To inhibit such degradation pathways, it is extremely important to properly design the nanoporous structures of the hosts and the molecular structures of the amine guests. By combining macroporous silica hosts, poly(ethylenimine) (PEI) functionalized with various alkyl epoxides, and phosphate-based oxidative stabilizers, we could synthesize adsorbents exhibiting low energy demands for CO2 capture and unprecedentedly high thermochemical stability under TSA conditions. The macroporous silica host synthesized by assembling fumed silica particles via spray-drying exhibited high hydrothermal stability and enabled uniform distribution of bulky amine polymers within its pores. The functionalization of PEI with alkyl epoxides converted its primary amines into hindered secondary amines, leading to a significant reduction in energy demand for TSA cycles and a remarkable improvement in long-term stabilities. The oxidative stability of amines could be drastically improved by adding phosphate metal-binding reagents, which can poison ppm-level metal impurities that catalyze amine oxidation. The present discussions will provide important insights into designing practical adsorbents for CO2 capture from engineering perspectives.
Collapse
Affiliation(s)
- Chaehoon Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yejee Ha
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minkee Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Grossmann Q, Stampi-Bombelli V, Yakimov A, Docherty S, Copéret C, Mazzotti M. Developing Versatile Contactors for Direct Air Capture of CO 2 through Amine Grafting onto Alumina Pellets and Alumina Wash-Coated Monoliths. Ind Eng Chem Res 2023; 62:13594-13611. [PMID: 37663169 PMCID: PMC10472440 DOI: 10.1021/acs.iecr.3c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023]
Abstract
The optimization of the air-solid contactor is critical to improve the efficiency of the direct air capture (DAC) process. To enable comparison of contactors and therefore a step toward optimization, two contactors are prepared in the form of pellets and wash-coated honeycomb monoliths. The desired amine functionalities are successfully incorporated onto these industrially relevant pellets by means of a procedure developed for powders, providing materials with a CO2 uptake not influenced by the morphology and the structure of the materials according to the sorption measurements. Furthermore, the amine functionalities are incorporated onto alumina wash-coated monoliths that provide a similar CO2 uptake compared to the pellets. Using breakthrough measurements, dry CO2 uptakes of 0.44 and 0.4 mmol gsorbent-1 are measured for pellets and for a monolith, respectively. NMR and IR studies of CO2 uptake show that the CO2 adsorbs mainly in the form of ammonium carbamate. Both contactors are characterized by estimated Toth isotherm parameters and linear driving force (LDF) coefficients to enable an initial comparison and provide information for further studies of the two contactors. LDF coefficients of 1.5 × 10-4 and of 1.2 × 10-3 s-1 are estimated for the pellets and for a monolith, respectively. In comparison to the pellets, the monolith therefore exhibits particularly promising results in terms of adsorption kinetics due to its hierarchical pore structure. This is reflected in the productivity of the adsorption step of 6.48 mol m-3 h-1 for the pellets compared to 7.56 mol m-3 h-1 for the monolith at a pressure drop approximately 1 order of magnitude lower, making the monoliths prime candidates to enhance the efficiency of DAC processes.
Collapse
Affiliation(s)
- Quirin Grossmann
- Institute
of Energy and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Alexander Yakimov
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Scott Docherty
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Marco Mazzotti
- Institute
of Energy and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Mitra A, Ghosh S, Paliwal KS, Ghosh S, Tudu G, Chandrasekar A, Mahalingam V. Alumina-Based Bifunctional Catalyst for Efficient CO 2 Fixation into Epoxides at Atmospheric Pressure. Inorg Chem 2022; 61:16356-16369. [PMID: 36194766 DOI: 10.1021/acs.inorgchem.2c02363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quest toward sustainability and decarbonization demands the development of methods for efficient carbon dioxide capture and utilization. The nonreductive CO2 fixation into epoxides to prepare cyclic carbonates has gained attention in recent years. In this work, we report the development of guanidine hydrochloride-functionalized γ alumina (γ-Al2O3), prepared using green solvents, as an efficient bifunctional catalyst for CO2 fixation. The resulting guanidine-grafted γ-Al2O3 (Al-Gh) proved to be an excellent catalyst to prepare cyclic carbonates from epoxides and CO2 with high selectivity. The nitrogen-rich Al-Gh shows increased CO2 adsorption capacity compared to that of γ-Al2O3. The as-prepared catalyst was able to carry out CO2 fixation at 85 °C under atmospheric pressure in the absence of solvents and external additives (e.g., TBAI or KI). The material showed negligible loss of catalytic activity even after five cycles of catalysis. The catalyst successfully converted many epoxides into their respective cyclic carbonates under the optimized conditions. The gram-scale synthesis of commercially important styrene carbonates from styrene oxide and CO2 using Al-Gh was also achieved. Density functional theory (DFT) calculations revealed the role of alumina in activating the epoxide. This activation facilitated the chloride ion to open the ring to react with CO2. The DFT studies also validated the role of alumina in stabilizing the electron-rich intermediates during the course of the reaction.
Collapse
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suptish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
8
|
Min YJ, Ganesan A, Realff MJ, Jones CW. Direct Air Capture of CO 2 Using Poly(ethyleneimine)-Functionalized Expanded Poly(tetrafluoroethylene)/Silica Composite Structured Sorbents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40992-41002. [PMID: 36047596 DOI: 10.1021/acsami.2c11143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapidly increasing atmospheric CO2 concentration has driven research into the development of cost- and energy-efficient materials and processes for the direct air capture of CO2 (DAC). Solid-supported amine materials can give high CO2 uptakes and acceptable sorption kinetics, but they are generally prepared in powder forms that are likely not practically deployable in large-scale operations due to significant pressure drops associated with packed-bed gas-solid contactors. To this end, the development of effective gas-solid contactors for CO2 capture technologies is important to allow processing high flow rates of gas with low-pressure drops and high mass transfer rates. In this study, we demonstrate new laminate-supported amine CO2 sorbents based on the impregnation of low-molecular-weight, branched poly(ethyleneimine) (PEI) into an expanded poly(tetrafluoroethylene) (ePTFE) sheet matrix containing embedded silica particles to form free-standing sheets amenable to incorporation into structured gas-solid contactors. The free-standing sheets are functionalized with PEI using a highly scalable wet impregnation method. This method allowed controllable PEI distribution and enough porosity retained inside the sheets to enable practical CO2 capacities ranging from 0.4 to 1.6 mmol CO2/gsorbent under dry conditions. Reversible CO2 capacities are achieved under both dry and humid temperature swing cycles, indicating promising material stability. The specific thermal energy requirement for the regeneration based on the measured CO2 and water capacities is 287 kJ/mol CO2, where the molar ratio of water to CO2 of 3.1 is achieved using hydrophobic materials. This is the lowest molar ratio among published DAC sorbents. A larger laminate module is tested under conditions closer to larger-scale operations (linear velocities 0.03, 0.05, and 0.1 m/sec) and demonstrates a stable capacity of 0.80 CO2/gsorbent over five cycles of CO2 adsorption and steam regeneration. The PEI-impregnated ePTFE/silica composite sorbent/contactors demonstrate promising DAC performance derived from the amine-filled silica particles contained in hydrophobic ePTFE domains to reduce water sorption and its concomitant regeneration energy penalty.
Collapse
Affiliation(s)
- Youn Ji Min
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States
| | - Arvind Ganesan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States
| | - Matthew J Realff
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
10
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
11
|
Chen B, Dong M, Liu S, Xie Z, Yang J, Li S, Wang Y, Du J, Liu H, Han B. CO2 Hydrogenation to Formate Catalyzed by Ru Coordinated with a N,P-Containing Polymer. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01678] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shulin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenbing Xie
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junjuan Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Yang G, Yu J, Peng S, Sheng K, Zhang H. Poly(ionic liquid)-Modified Metal Organic Framework for Carbon Dioxide Adsorption. Polymers (Basel) 2020; 12:E370. [PMID: 32046025 PMCID: PMC7077456 DOI: 10.3390/polym12020370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023] Open
Abstract
The design and synthesis of solid sorbents for effective carbon dioxide adsorption are essential for practical applications regarding carbon emissions. Herein, we report the synthesis of composite materials consisting of amine-functionalized imidazolium-type poly(ionic liquid) (PIL) and metal organic frameworks (MOFs) through complexation of amino groups and metal ions. The carbon dioxide adsorption behavior of the synthesized composite materials was evaluated using the temperature-programmed desorption (TPD) technique. Benefiting from the large surface area of metal organic frameworks and high carbon dioxide diffusivity in ionic liquid moieties, the carbon dioxide adsorption capacity of the synthesized composite material reached 19.5 cm3·g-1, which is much higher than that of pristine metal organic frameworks (3.1 cm3·g-1) under carbon dioxide partial pressure of 0.2 bar at 25 °C. The results demonstrate that the combination of functionalized poly(ionic liquid) with metal organic frameworks can be a promising solid sorbent for carbon dioxide adsorption.
Collapse
Affiliation(s)
- Guangyuan Yang
- China Tobacco Hubei Industrial Cigarette Materials, LLC, Wuhan 430051, China; (G.Y.); (K.S.)
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
| | - Jialin Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
| | - Sanwen Peng
- China Tobacco Hubei Industrial Cigarette Materials, LLC, Wuhan 430051, China; (G.Y.); (K.S.)
| | - Kuang Sheng
- China Tobacco Hubei Industrial Cigarette Materials, LLC, Wuhan 430051, China; (G.Y.); (K.S.)
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|
13
|
Song X, Yu J, Wei M, Li R, Pan X, Yang G, Tang H. Ionic Liquids-Functionalized Zeolitic Imidazolate Framework for Carbon Dioxide Adsorption. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2361. [PMID: 31349539 PMCID: PMC6695696 DOI: 10.3390/ma12152361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/02/2023]
Abstract
Ionic-liquid-functionalized zeolitic imidazolate frameworks (ZIF) were synthesized using the co-ligands of 2-methylimidazole and amine-functionalized ionic liquid during the formation process of frameworks. The resulting ionic-liquid-modified ZIF had a specific surface area of 1707 m2·g-1 with an average pore size of about 1.53 nm. Benefiting from the large surface area and the high solubility of carbon dioxide in ionic-liquid moieties, the synthesized materials exhibited a carbon dioxide adsorption capacity of about 24.9 cm3·g-1, whereas it was 16.3 cm3·g-1 for pristine ZIF at 25 °C under 800 mmHg. The results demonstrate that the modification of porous materials with ionic liquids could be an effective way to fabricate solid sorbents for carbon dioxide adsorption.
Collapse
Affiliation(s)
- Xuyan Song
- Technology Centre of Hubei China Tobacco Industry Co., LTD., Wuhan 430051, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jialin Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Min Wei
- Technology Centre of Hubei China Tobacco Industry Co., LTD., Wuhan 430051, China
| | - Ran Li
- Technology Centre of Hubei China Tobacco Industry Co., LTD., Wuhan 430051, China
| | - Xi Pan
- Technology Centre of Hubei China Tobacco Industry Co., LTD., Wuhan 430051, China
| | - Guoping Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
14
|
Bui TV, Umbarila SJ, Wang B, Sooknoi T, Li G, Chen B, Resasco DE. High-Temperature Grafting Silylation for Minimizing Leaching of Acid Functionality from Hydrophobic Mesoporous Silicas Used as Catalysts in the Liquid Phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6838-6852. [PMID: 31039313 DOI: 10.1021/acs.langmuir.9b00487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ordered-hexagonal silica materials, such as Mobil crystalline material-41 and Santa Barbara amorphous-15, have important applications in heterogeneous catalysis and biomass conversion due to their chemical stability and mesoporous structure. Low-temperature grafting (LG) is one of the most common functionalization methods used to modify the acidity/basicity or hydrophobicity/hydrophilicity of the surface. However, the materials prepared by this method are prone to leaching of functional groups into the reaction medium. The exact nature of the leaching phenomenon has not been fully addressed in the literature. In this contribution, we have investigated this process at the molecular level by combining well-controlled reaction experiments and several characterization techniques (Fourier transform infrared, 1H-29Si cross-polarization magic-angle spinning NMR, X-ray diffraction, thermogravimetric analysis, and N2 adsorption-desorption). We have found that leaching is originated by the presence of terminal surface silanols, which render the catalysts susceptible to the attack of water and polar compounds. Hence, instead of simple detaching of functional groups, leaching can be better described as a partial dissolution of the surface layers of the silica, which of course also removes the functional groups during this process. Therefore, an effective strategy to minimize leaching is to reduce the density of free silanols via full functionalization of the surface. We propose a novel silylation method, high-temperature grafting, which allows the grafting process to be conducted at high temperatures (180 °C) under solvent-free conditions. By this method, a more complete silylation of surface silanols can be obtained. Consequently, the samples prepared by this high-temperature grafting method show to be highly stable during acid-catalyzed alkylation reaction, conducted under severe conditions (high temperature and in the presence of polar solvents).
Collapse
Affiliation(s)
- Tuong V Bui
- School of Chemical, Biological and Materials Engineering , University of Oklahoma , 100 East Boyd Street , Norman , Oklahoma 73019 , United States
| | - Santiago J Umbarila
- School of Chemical, Biological and Materials Engineering , University of Oklahoma , 100 East Boyd Street , Norman , Oklahoma 73019 , United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering , University of Oklahoma , 100 East Boyd Street , Norman , Oklahoma 73019 , United States
| | - Tawan Sooknoi
- School of Chemical, Biological and Materials Engineering , University of Oklahoma , 100 East Boyd Street , Norman , Oklahoma 73019 , United States
| | - Gengnan Li
- School of Chemical, Biological and Materials Engineering , University of Oklahoma , 100 East Boyd Street , Norman , Oklahoma 73019 , United States
| | - Banghao Chen
- NMR Facilities, Department of Chemistry & Biochemistry , Florida State University , 95 Chieftan Way Rm. 118 DLC , Tallahassee , Florida 32306 , United States
| | - Daniel E Resasco
- School of Chemical, Biological and Materials Engineering , University of Oklahoma , 100 East Boyd Street , Norman , Oklahoma 73019 , United States
| |
Collapse
|
15
|
He H, Tang H, Chen X, Hou X, Zhou X, Chen H, Wu S, Wang S. Structure Design of Low-Temperature Regenerative Hyperbranched Polyamine Adsorbent for CO 2 Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14169-14179. [PMID: 30395474 DOI: 10.1021/acs.langmuir.8b02493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel low-temperature regenerative hydroxy-functionalized hyperbranched polyamine adsorbent (0.16OH-HBPA) for CO2 capture was readily prepared using glutaraldehyde to cross-link amino-terminated hyperbranched polymers (HBP) and functionalized with glycidol, followed by the reduction of the imino groups of 0.16OH-HBPA to alkyl aminos using NaBH4. Here, the HBP has been prepared through the one-pot reaction between pentaethylenehexamine and methyl acrylate. The as-prepared 0.16OH-HBPA adsorbent showed a high adsorption capacity (4.05 mmol/g) for CO2 (concentration, 10%) in the presence of water at 25 °C, and the alkyl amino utilization efficiency reached 73%. More importantly, the CO2-adsorbed 0.16OH-HBPA showed excellent regenerative performance at low temperatures (85 °C, under pure CO2 gas) due to the introduced hydroxyl that can cooperatively adsorb CO2 via the amino groups to form stable carbamic acid. This process suppressed the formation of open-chain urea and cyclic urea and could overcome the disadvantages of high regeneration temperatures (≥90 °C, under pure inert gas) of CO2-adsorbed traditional solid amine adsorbents.
Collapse
Affiliation(s)
- Hui He
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning 530004 , P. R. China
| | - Hanying Tang
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Xingjuan Chen
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Xudong Hou
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Xiaochong Zhou
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Hong Chen
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Shanyan Wu
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning 530004 , P. R. China
| |
Collapse
|
16
|
CO2 Adsorption Property of Amine-Modified Amorphous TiO2 Nanoparticles with a High Surface Area. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0257-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Potter ME, Cho KM, Lee JJ, Jones CW. Role of Alumina Basicity in CO 2 Uptake in 3-Aminopropylsilyl-Grafted Alumina Adsorbents. CHEMSUSCHEM 2017; 10:2192-2201. [PMID: 28388018 DOI: 10.1002/cssc.201700115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Oxide-supported amine materials are widely known to be effective CO2 sorbents under simulated flue-gas and direct-air-capture conditions. Most work has focused on amine species loaded onto porous silica supports, though potential stability advantages may be offered through the use of porous alumina supports. Unlike silica materials, which are comparably inert, porous alumina materials can be tuned to have substantial acidity and/or basicity. Owing to their amphoteric nature, alumina supports play a more active role in CO2 sorption than silica supports, potentially directly participating in the adsorption process. In this work, primary amines associated with 3-aminopropyltriethoxysilane are grafted onto two different mesoporous alumina materials having different levels of basicity. Adsorbent materials with different amine loadings are prepared, and the CO2 -adsorption behavior of similar amines on the two alumina supports is demonstrated to be different. At low amine loadings, the inherent properties of the support surface play a significant role, whereas at high amine loadings, when the alumina surface is effectively blocked, the sorbents prepared on the two supports behave similarly. At high amine loadings, amine-CO2 -amine interactions are shown to dominate, leading to adsorbed species that appear similar to the species formed over silica-supported amine materials. The sorbent properties are comprehensively characterized using N2 physisorption analysis, in situ FTIR spectroscopy, and adsorption microcalorimetry.
Collapse
Affiliation(s)
- Matthew E Potter
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332, USA
| | - Kyeong Min Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332, USA
- Department of Chemical and Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Jason J Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332, USA
| | - Christopher W Jones
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332, USA
| |
Collapse
|
19
|
Foo GS, Lee JJ, Chen CH, Hayes SE, Sievers C, Jones CW. Elucidation of Surface Species through in Situ FTIR Spectroscopy of Carbon Dioxide Adsorption on Amine-Grafted SBA-15. CHEMSUSCHEM 2017; 10:266-276. [PMID: 27573047 DOI: 10.1002/cssc.201600809] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 05/19/2023]
Abstract
The nature of the surface species formed through the adsorption of CO2 on amine-grafted mesoporous silica is investigated through in situ FTIR spectroscopy with the aid of 15 N dynamic nuclear polarization (DNP) and 13 C NMR spectroscopy. Primary, secondary, and tertiary amines are functionalized onto a mesoporous SBA-15 silica. Both isotopically labeled 13 CO2 and natural-abundance CO2 are used for accurate FTIR peak assignments, which are compared with assignments reported previously. The results support the formation of monomeric and dimeric carbamic acid species on secondary amines that are stabilized differently to the monocarbamic acid species on primary amines. Furthermore, the results from isotopically labelled 13 CO2 experiments suggest the existence of two carbamate species on primary amines, whereas only one species is observed predominantly on secondary amines. The analysis of the IR peak intensities and frequencies indicate that the second carbamate species on primary amines is probably more asymmetric in nature and forms in a relatively smaller amount. Only the formation of bicarbonate ions at a low concentration is observed on tertiary amines; therefore, physisorbed water on the surface plays a role in the hydrolysis of CO2 even if water is not added intentionally and dry gases are used. This suggests that a small amount of bicarbonate ions could be expected to form on primary and secondary amines, which are more hydrophilic than tertiary amines, and these low concentration species are difficult to observe on such samples.
Collapse
Affiliation(s)
- Guo Shiou Foo
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia, 30332, United States
| | - Jason J Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia, 30332, United States
| | - Chia-Hsin Chen
- Department of Chemistry, Washington University, One Brookings Drive, Saint Louis, Missouri, 63130, United States
| | - Sophia E Hayes
- Department of Chemistry, Washington University, One Brookings Drive, Saint Louis, Missouri, 63130, United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia, 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia, 30332, United States
| |
Collapse
|
20
|
Potter ME, Pang SH, Jones CW. Adsorption Microcalorimetry of CO 2 in Confined Aminopolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:117-124. [PMID: 27992227 DOI: 10.1021/acs.langmuir.6b03793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aminopolymers confined within mesoporous supports have shown promise as materials for direct capture of CO2 from ambient air. In spite of this, relatively little is known about the energetics of CO2 binding in these materials, and the limited calorimetric studies published to date have focused on materials made using molecular aminosilanes rather than amine polymers. In this work, poly(ethylenimine) (PEI) is impregnated within mesoporous SBA-15, and the heats of CO2 adsorption at 30 °C are investigated using a Tian-Calvet calorimeter with emphasis on the role of PEI loading and CO2 pressure in the compositional region relevant to direct capture of CO2 from ambient air. In parallel, CO2 uptakes of these materials are measured using multiple complementary approaches, including both volumetric and gravimetric methods, and distinct changes in uptake as a function of CO2 pressure and amine loading are observed. The CO2 sorption behavior is directly linked to textural data describing the porosity and PEI distribution in the materials.
Collapse
Affiliation(s)
- Matthew E Potter
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Simon H Pang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Mafra L, Čendak T, Schneider S, Wiper PV, Pires J, Gomes JRB, Pinto ML. Structure of Chemisorbed CO2 Species in Amine-Functionalized Mesoporous Silicas Studied by Solid-State NMR and Computer Modeling. J Am Chem Soc 2016; 139:389-408. [DOI: 10.1021/jacs.6b11081] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Luís Mafra
- CICECO
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tomaž Čendak
- CICECO
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sarah Schneider
- CICECO
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paul V. Wiper
- CICECO
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Pires
- Centro
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - José R. B. Gomes
- CICECO
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Moisés L. Pinto
- CERENA,
Departamento de Engenharia Quı́mica, Instituto Superior
Técnico, Universidade de Lisboa, Av. Rovisco Pais, no. 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
22
|
Sakwa-Novak MA, Yoo CJ, Tan S, Rashidi F, Jones CW. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air. CHEMSUSCHEM 2016; 9:1859-1868. [PMID: 27304708 DOI: 10.1002/cssc.201600404] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 06/06/2023]
Abstract
The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2 m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton.
Collapse
Affiliation(s)
- Miles A Sakwa-Novak
- School of Chemical&Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Chun-Jae Yoo
- School of Chemical&Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Shuai Tan
- School of Chemical&Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Fereshteh Rashidi
- School of Chemical&Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Christopher W Jones
- School of Chemical&Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
23
|
Yang Q, Wang Z, Bao Z, Zhang Z, Yang Y, Ren Q, Xing H, Dai S. New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. CHEMSUSCHEM 2016; 9:806-812. [PMID: 27061812 DOI: 10.1002/cssc.201501691] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/08/2016] [Indexed: 06/05/2023]
Abstract
The last decade saw an explosion of interest in using amine-functionalized materials for CO2 capture and conversion, and it is of great importance to elucidate the relationship between the molecular structure of amine-functionalized materials and their CO2 capacity. In this work, based on a new quantitative analysis method for the CO2 absorption mechanism of amino-acid ionic liquids (ILs) and quantum chemical calculations, we show that the small difference in the local structure of amine groups in ILs could lead to much different CO2 absorption mechanisms, which provides an opportunity for achieving higher CO2 capacity by structure design. This work revealed that the actual CO2 absorption mechanism by amino-acid ILs goes beyond the apparent CO2 /amine stoichiometry; a rigid ring structure around the amine group in ILs creates a unique electrostatic environment that inhibits the deprotonation of carbamic acid and enables actually equimolar CO2 /amine absorption.
Collapse
Affiliation(s)
- Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiping Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37966, United States
| |
Collapse
|
24
|
Pang SH, Jue ML, Leisen J, Jones CW, Lively RP. PIM-1 as a Solution-Processable "Molecular Basket" for CO 2 Capture from Dilute Sources. ACS Macro Lett 2015; 4:1415-1419. [PMID: 35614793 DOI: 10.1021/acsmacrolett.5b00775] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rising atmospheric CO2 levels have triggered recent research into the science of amine materials supported on hard, porous materials such as mesoporous silica or alumina. While such materials can give high CO2 uptakes and good sorption kinetics, they are difficult to utilize in practical applications due to difficulty in contacting large volumes of CO2-laden gases with powder materials without significant pressure drops or sorbent attrition. Here, we describe a simple approach based on the impregnation of a permanently microporous polymer, PIM-1, with poly(ethylene imine) (PEI), removing the need for use of the hard oxide. PEI/PIM-1 composites demonstrate comparable performance to more traditionally studied oxide sorbents, with the benefit that PIM-1 is soluble in common solvents, making it eminently more viable for processing into morphologies that can facilitate heat and mass transfer and fabrication into low pressure drop contactors. In addition to adsorption studies performed on a variety of PEI/PIM-1 architectures, spin diffusion NMR studies were performed to suggest that PEI is well-dispersed within the PIM-1, allowing for rapid CO2 adsorption.
Collapse
Affiliation(s)
- Simon H. Pang
- School of Chemical & Biomolecular Engineering and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Melinda L. Jue
- School of Chemical & Biomolecular Engineering and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Johannes Leisen
- School of Chemical & Biomolecular Engineering and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular Engineering and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Potassium incorporated alumina based CO2 capture sorbents: Comparison with supported amine sorbents under ultra-dilute capture conditions. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Didas SA, Choi S, Chaikittisilp W, Jones CW. Amine-Oxide Hybrid Materials for CO2 Capture from Ambient Air. Acc Chem Res 2015; 48:2680-7. [PMID: 26356307 DOI: 10.1021/acs.accounts.5b00284] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a "direct air capture" process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In this regard, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.
Collapse
Affiliation(s)
- Stephanie A. Didas
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Sunho Choi
- Chemical
Engineering Department, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Watcharop Chaikittisilp
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| |
Collapse
|