1
|
Marcos Celada L, Dvinskikh SV, Olsén P. Controlled green heterogenous functionalization of cellulose via strategic reaction system design. Carbohydr Polym 2025; 354:123310. [PMID: 39978899 DOI: 10.1016/j.carbpol.2025.123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Green chemical modification of cellulose presents a unique chemical challenge, especially from the vantage point of sustainable development that is favored by the use of wood fibers, heterogeneous conditions, and reactants and solvents of biobased relevance. However, heterogeneous conditions imply that cellulose is a supramolecular assembly whose composition and build-up depend on the initial source and pretreatments. Also, understanding reaction outcomes is accompanied by inherently challenging characterization. The key question is how we should design our reaction systems to achieve customizable and green functionalization of cellulose under heterogeneous conditions. To explore this, we selected never-dried high-content cellulose fibers (>96 % cellulose) as the substrate for the modification with three relevant biobased reactants (succinic, maleic, and crotonic anhydride), with BBIL-AcO as a biobased reactivity promoter. The reactions were performed under either high fiber swelling (basic) or low fiber swelling (acidic) heterogeneous conditions, and the outcome was analyzed in detail. The results unravel clear design strategies for controlling the reaction outcome during the green heterogeneous functionalization of cellulose and present clear synthetic strategies for using cellulose as the key substrate in the next generation of fully biobased and green materials.
Collapse
Affiliation(s)
- Lukas Marcos Celada
- Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden
| | - Sergey V Dvinskikh
- Department of chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Peter Olsén
- Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden; Wallenberg Wood Science Center, Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden.
| |
Collapse
|
2
|
Zhao T, Xiao P, Luo M, Nie S, Li F, Liu Y. Eco-Friendly Lithium Separators: A Frontier Exploration of Cellulose-Based Materials. Int J Mol Sci 2024; 25:6822. [PMID: 38999935 PMCID: PMC11241740 DOI: 10.3390/ijms25136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Lithium-ion batteries, as an excellent energy storage solution, require continuous innovation in component design to enhance safety and performance. In this review, we delve into the field of eco-friendly lithium-ion battery separators, focusing on the potential of cellulose-based materials as sustainable alternatives to traditional polyolefin separators. Our analysis shows that cellulose materials, with their inherent degradability and renewability, can provide exceptional thermal stability, electrolyte absorption capability, and economic feasibility. We systematically classify and analyze the latest advancements in cellulose-based battery separators, highlighting the critical role of their superior hydrophilicity and mechanical strength in improving ion transport efficiency and reducing internal short circuits. The novelty of this review lies in the comprehensive evaluation of synthesis methods and cost-effectiveness of cellulose-based separators, addressing significant knowledge gaps in the existing literature. We explore production processes and their scalability in detail, and propose innovative modification strategies such as chemical functionalization and nanocomposite integration to significantly enhance separator performance metrics. Our forward-looking discussion predicts the development trajectory of cellulose-based separators, identifying key areas for future research to overcome current challenges and accelerate the commercialization of these green technologies. Looking ahead, cellulose-based separators not only have the potential to meet but also to exceed the benchmarks set by traditional materials, providing compelling solutions for the next generation of lithium-ion batteries.
Collapse
Affiliation(s)
- Tian Zhao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Pengcheng Xiao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Mingliang Luo
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Saiqun Nie
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Fuzhi Li
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
3
|
Zheng D, Sun X, Sun H, Zhu Y, Zhu J, Zhu P, Yu Z, Ye Y, Zhang Y, Jiang F. Effect of hornification on the isolation of anionic cellulose nanofibrils from Kraft pulp via maleic anhydride esterification. Carbohydr Polym 2024; 333:121961. [PMID: 38494205 DOI: 10.1016/j.carbpol.2024.121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Cellulose nanofibrils (CNF) isolation based on a catalyst-free maleic anhydride esterification has proven to be effective, however, the effects of pulp hornification on CNF isolation by this strategy have yet to be explored, which could present significant impacts for CNF isolation. Herein, dried northern bleached softwood Kraft pulp (D-NBSK) and never-dried northern bleached softwood Kraft pulp (ND-NBSK) were selected as the substrates. After esterification with maleic anhydride (MA), the esterified ND-NBSK pulp (E-ND) shows a significantly smaller size and more fragmented structure than the esterified D-NBSK pulp (E-D). Meanwhile, higher degree of esterification can be realized for the never dried pulp as compared to the dried pulp, which is corroborated by the significantly stronger characteristic peaks of CO (1720 cm-1) and -COO- (1575 cm-1) from the FTIR spectra and the higher surface charge content (0.86 ± 0.04 mmol/g vs. 0.55 ± 0.05 mmol/g). A comparison of the characteristics of the resulting CNF similarly demonstrated the negative impact of hornification. Overall, this work indicates that hornification tends to reduce the accessibility of chemical reagents to the pulp, leading to insufficient deconstruction. Such negative impact of hornification should be considered when performing nanocellulose isolation, especially when using pulp as feedstock.
Collapse
Affiliation(s)
- Dingyuan Zheng
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China; Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Hao Sun
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China; Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Penghui Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yuhang Ye
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
4
|
Bourgery C, Mendoza DJ, Garnier G, Mouterde LMM, Allais F. Immobilization of Adenosine Derivatives onto Cellulose Nanocrystals via Click Chemistry for Biocatalysis Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11315-11323. [PMID: 38394235 DOI: 10.1021/acsami.3c19025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Adenosine triphosphate (ATP) is a central molecule of organisms and is involved in many biological processes. It is also widely used in biocatalytic processes, especially as a substrate and precursor of many cofactors─such as nicotinamide adenine dinucleotide phosphate (NADP(H)), coenzyme A (CoA), and S-adenosylmethionine (SAM). Despite its great scientific interest and pivotal role, its use in industrial processes is impeded by its prohibitory cost. To overcome this limitation, we developed a greener synthesis of adenosine derivatives and efficiently selectively grafted them onto organic nanoparticles. In this study, cellulose nanocrystals were used as a model combined with click chemistry via a copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC). The grafted adenosine triphosphate derivative fully retains its biocatalytic capability, enabling heterobiocatalysis for modern biochemical processes.
Collapse
Affiliation(s)
- Célestin Bourgery
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - David Joram Mendoza
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Marcos Celada L, Martín J, Dvinskikh SV, Olsén P. Fully Bio-Based Ionic Liquids for Green Chemical Modification of Cellulose in the Activated-State. CHEMSUSCHEM 2024; 17:e202301233. [PMID: 37792278 DOI: 10.1002/cssc.202301233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
Biopolymers, especially cellulose, are vital to transitioning to a circular economy and reducing our reliance on fossil fuels. However, for many applications a high degree of cellulose hydroxyl modification is necessary. The challenge is that the chemical features of the hydroxyls of cellulose and water are similar. Therefore, chemical modification of cellulose is often explored under non-aqueous conditions with systems that result in high hydroxyl accessibility and reduce cellulose aggregation. Unfortunately, these systems depend on hazardous and complex solvents from fossil resources, which diverge from the initial sustainability objectives. To address this, we developed three new betaine-based ionic liquids that are fully bio-based, scalable, and green. We found that a specific ionic liquid had the perfect chemical features for the chemical activation of cellulose without disturbing its crystalline ordering. The high activation in heterogeneous conditions was exemplified by reacting cellulose with succinic anhydride, resulting in more than 30 % conversion of all hydroxyls on cellulose. Overall, this work opens new perspectives for the derivatization of cellulosic materials while simultaneously "keeping it green".
Collapse
Affiliation(s)
- Lukas Marcos Celada
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden
| | - Judith Martín
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden
| | - Sergey V Dvinskikh
- Department of chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden
| | - Peter Olsén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden
| |
Collapse
|
6
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|
7
|
Brusentsev Y, Yang P, King AWT, Cheng F, Cortes Ruiz MF, Eriksson JE, Kilpeläinen I, Willför S, Xu C, Wågberg L, Wang X. Photocross-Linkable and Shape-Memory Biomaterial Hydrogel Based on Methacrylated Cellulose Nanofibres. Biomacromolecules 2023; 24:3835-3845. [PMID: 37527286 PMCID: PMC10428165 DOI: 10.1021/acs.biomac.3c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Indexed: 08/03/2023]
Abstract
In the context of three-dimensional (3D) cell culture and tissue engineering, 3D printing is a powerful tool for customizing in vitro 3D cell culture models that are critical for understanding the cell-matrix and cell-cell interactions. Cellulose nanofibril (CNF) hydrogels are emerging in constructing scaffolds able to imitate tissue in a microenvironment. A direct modification of the methacryloyl (MA) group onto CNF is an appealing approach to synthesize photocross-linkable building blocks in formulating CNF-based bioinks for light-assisted 3D printing; however, it faces the challenge of the low efficiency of heterogenous surface modification. Here, a multistep approach yields CNF methacrylate (CNF-MA) with a decent degree of substitution while maintaining a highly dispersible CNF hydrogel, and CNF-MA is further formulated and copolymerized with monomeric acrylamide (AA) to form a super transparent hydrogel with tuneable mechanical strength (compression modulus, approximately 5-15 kPa). The resulting photocurable hydrogel shows good printability in direct ink writing and good cytocompatibility with HeLa and human dermal fibroblast cell lines. Moreover, the hydrogel reswells in water and expands to all directions to restore its original dimension after being air-dried, with further enhanced mechanical properties, for example, Young's modulus of a 1.1% CNF-MA/1% PAA hydrogel after reswelling in water increases to 10.3 kPa from 5.5 kPa.
Collapse
Affiliation(s)
- Yury Brusentsev
- Laboratory
of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Peiru Yang
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Cell
Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Alistair W. T. King
- Chemistry
Department, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland
| | - Fang Cheng
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Maria F. Cortes Ruiz
- Department
of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
- Department
of Fibre and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - John E. Eriksson
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Cell
Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Ilkka Kilpeläinen
- Chemistry
Department, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland
| | - Stefan Willför
- Laboratory
of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Chunlin Xu
- Laboratory
of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Lars Wågberg
- Department
of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
- Department
of Fibre and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Xiaoju Wang
- Laboratory
of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
8
|
Heise K, Koso T, King AWT, Nypelö T, Penttilä P, Tardy BL, Beaumont M. Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:23413-23432. [PMID: 36438677 PMCID: PMC9664451 DOI: 10.1039/d2ta05277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Tetyana Koso
- Materials Chemistry Division, Chemistry Department, University of Helsinki FI-00560 Helsinki Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd., Biomaterial Processing and Products 02044 Espoo Finland
| | - Tiina Nypelö
- Chalmers University of Technology 41296 Gothenburg Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering Abu Dhabi United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University Abu Dhabi United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University Abu Dhabi United Arab Emirates
| | - Marco Beaumont
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24 A-3430 Tulln Austria
| |
Collapse
|
9
|
Subbotina E, Ram F, Dvinskikh SV, Berglund LA, Olsén P. Aqueous synthesis of highly functional, hydrophobic, and chemically recyclable cellulose nanomaterials through oxime ligation. Nat Commun 2022; 13:6924. [PMID: 36376337 PMCID: PMC9663568 DOI: 10.1038/s41467-022-34697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cellulose nanofibril (CNF) materials are candidates for the sustainable development of high mechanical performance nanomaterials. Due to inherent hydrophilicity and limited functionality range, most applications require chemical modification of CNF. However, targeted transformations directly on CNF are cumbersome due to the propensity of CNF to aggregate in non-aqueous solvents at high concentrations, complicating the choice of suitable reagents and requiring tedious separations of the final product. This work addresses this challenge by developing a general, entirely water-based, and experimentally simple methodology for functionalizing CNF, providing aliphatic, allylic, propargylic, azobenzylic, and substituted benzylic functional groups. The first step is NaIO4 oxidation to dialdehyde-CNF in the wet cake state, followed by oxime ligation with O-substituted hydroxylamines. The increased hydrolytic stability of oximes removes the need for reductive stabilization as often required for the analogous imines where aldehyde groups react with amines in water. Overall, the process provides a tailored degree of nanofibril functionalization (2-4.5 mmol/g) with the possible reversible detachment of the functionality under mildly acidic conditions, resulting in the reformation of dialdehyde CNF. The modified CNF materials were assessed for potential applications in green electronics and triboelectric nanogenerators.
Collapse
Affiliation(s)
- Elena Subbotina
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Farsa Ram
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Sergey V. Dvinskikh
- grid.5037.10000000121581746Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44 Stockholm, Sweden
| | - Lars A. Berglund
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Peter Olsén
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| |
Collapse
|
10
|
Fluorescence Labeling of Cellulose Nanocrystals—A Facile and Green Synthesis Route. Polymers (Basel) 2022; 14:polym14091820. [PMID: 35566986 PMCID: PMC9099464 DOI: 10.3390/polym14091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Efficient chemical modification of cellulose nanocrystals (CNCs) by grafting commonly involves aprotic solvents, toxic reactants, harsh reaction conditions, or catalysts, which have negative effects on the particle character, reduced dispersibility and requires further purification, if products are intended for biomedical applications. This work, in contrast, presents a robust, facile, and green synthesis protocol for the grafting of an amino-reactive fluorophore like fluorescein isothiocyanate (FITC) on aqueous CNCs, combining and modifying existent approaches in a two-step procedure. Comparably high grafting yields were achieved, which were confirmed by thermogravimetry, FTIR, and photometry. The dispersive properties were confirmed by DLS, AF4-MALS, and TEM studies. The presented route is highly suitable for the introduction of silane-bound organic groups and offers a versatile platform for further modification routes of cellulose-based substrates.
Collapse
|
11
|
Beaumont M, Jahn E, Mautner A, Veigel S, Böhmdorfer S, Potthast A, Gindl-Altmutter W, Rosenau T. Facile Preparation of Mechanically Robust and Functional Silica/Cellulose Nanofiber Gels Reinforced with Soluble Polysaccharides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:895. [PMID: 35335708 PMCID: PMC8949125 DOI: 10.3390/nano12060895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Nanoporous silica gels feature extremely large specific surface areas and high porosities and are ideal candidates for adsorption-related processes, although they are commonly rather fragile. To overcome this obstacle, we developed a novel, completely solvent-free process to prepare mechanically robust CNF-reinforced silica nanocomposites via the incorporation of methylcellulose and starch. Significantly, the addition of starch was very promising and substantially increased the compressive strength while preserving the specific surface area of the gels. Moreover, different silanes were added to the sol/gel process to introduce in situ functionality to the CNF/silica hydrogels. Thereby, CNF/silica hydrogels bearing carboxyl groups and thiol groups were produced and tested as adsorber materials for heavy metals and dyes. The developed solvent-free sol/gel process yielded shapable 3D CNF/silica hydrogels with high mechanical strength; moreover, the introduction of chemical functionalities further widens the application scope of such materials.
Collapse
Affiliation(s)
- Marco Beaumont
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
| | - Elisabeth Jahn
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
| | - Andreas Mautner
- Faculty of Chemistry, Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Street 42, 1090 Vienna, Austria;
| | - Stefan Veigel
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (S.V.); (W.G.-A.)
| | - Stefan Böhmdorfer
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
| | - Wolfgang Gindl-Altmutter
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (S.V.); (W.G.-A.)
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Turku, Finland
| |
Collapse
|
12
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
13
|
Coccia F, Gryshchuk L, Moimare P, Bossa FDL, Santillo C, Barak-Kulbak E, Verdolotti L, Boggioni L, Lama GC. Chemically Functionalized Cellulose Nanocrystals as Reactive Filler in Bio-Based Polyurethane Foams. Polymers (Basel) 2021; 13:2556. [PMID: 34372159 PMCID: PMC8348027 DOI: 10.3390/polym13152556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cellulose Nanocrystals, CNC, opportunely functionalized are proposed as reactive fillers in bio-based flexible polyurethane foams to improve, mainly, their mechanical properties. To overcome the cellulose hydrophilicity, CNC was functionalized on its surface by linking covalently a suitable bio-based polyol to obtain a grafted-CNC. The polyols grafted with CNC will react with the isocyanate in the preparation of the polyurethane foams. An attractive way to introduce functionalities on cellulose surfaces in aqueous media is silane chemistry by using functional trialkoxy silanes, X-Si (OR)3. Here, we report the synthesis of CNC-grafted-biopolyol to be used as a successful reactive filler in bio-based polyurethane foams, PUFs. The alkyl silanes were used as efficient coupling agents for the grafting of CNC and bio-polyols. Four strategies to obtain CNC-grafted-polyol were fine-tuned to use CNC as an active filler in PUFs. The effective grafting of the bio polyol on CNC was evaluated by FTIR analysis, and the amount of grafted polyol by thermogravimetric analysis. Finally, the morphological, thermal and mechanical properties and hydrophobicity of filled PUFs were thoughtfully assessed as well as the structure of the foams and, in particular, of the edges and walls of the cell foams by means of the Gibson-Ashby model. Improved thermal stability and mechanical properties of PU foams containing CNC-functionalized-polyol are observed. The morphology of the PU foams is also influenced by the functionalization of the CNC.
Collapse
Affiliation(s)
- Francesca Coccia
- Institute of Chemical Science and Technologies—“G. Natta”, National Research Council, via A. Corti 12, 20133 Milan, Italy; (F.C.); (P.M.)
| | - Liudmyla Gryshchuk
- Leibniz-Institut für Verbundwerkstoffe GmbH, Technische Universität, Erwin-Schrödinger-Straße 58, 67663 Kaiserslautern, Germany;
| | - Pierluigi Moimare
- Institute of Chemical Science and Technologies—“G. Natta”, National Research Council, via A. Corti 12, 20133 Milan, Italy; (F.C.); (P.M.)
| | - Ferdinando de Luca Bossa
- Institute of Polymers, Composite and Biomaterials, National Research Council, Piazzale Enrico Fermi, 80055 Portici, Italy; (F.d.L.B.); (C.S.); (G.C.L.)
| | - Chiara Santillo
- Institute of Polymers, Composite and Biomaterials, National Research Council, Piazzale Enrico Fermi, 80055 Portici, Italy; (F.d.L.B.); (C.S.); (G.C.L.)
| | | | - Letizia Verdolotti
- Institute of Polymers, Composite and Biomaterials, National Research Council, Piazzale Enrico Fermi, 80055 Portici, Italy; (F.d.L.B.); (C.S.); (G.C.L.)
| | - Laura Boggioni
- Institute of Chemical Science and Technologies—“G. Natta”, National Research Council, via A. Corti 12, 20133 Milan, Italy; (F.C.); (P.M.)
| | - Giuseppe Cesare Lama
- Institute of Polymers, Composite and Biomaterials, National Research Council, Piazzale Enrico Fermi, 80055 Portici, Italy; (F.d.L.B.); (C.S.); (G.C.L.)
| |
Collapse
|
14
|
Beaumont M, Tran R, Vera G, Niedrist D, Rousset A, Pierre R, Shastri VP, Forget A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021; 22:1027-1052. [PMID: 33577286 PMCID: PMC7944484 DOI: 10.1021/acs.biomac.0c01406] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/29/2021] [Indexed: 12/22/2022]
Abstract
With the increasing growth of the algae industry and the development of algae biorefinery, there is a growing need for high-value applications of algae-extracted biopolymers. The utilization of such biopolymers in the biomedical field can be considered as one of the most attractive applications but is challenging to implement. Historically, polysaccharides extracted from seaweed have been used for a long time in biomedical research, for example, agarose gels for electrophoresis and bacterial culture. To overcome the current challenges in polysaccharides and help further the development of high-added-value applications, an overview of the entire polysaccharide journey from seaweed to biomedical applications is needed. This encompasses algae culture, extraction, chemistry, characterization, processing, and an understanding of the interactions of soft matter with living organisms. In this review, we present algae polysaccharides that intrinsically form hydrogels: alginate, carrageenan, ulvan, starch, agarose, porphyran, and (nano)cellulose and classify these by their gelation mechanisms. The focus of this review further lays on the culture and extraction strategies to obtain pure polysaccharides, their structure-properties relationships, the current advances in chemical backbone modifications, and how these modifications can be used to tune the polysaccharide properties. The available techniques to characterize each organization scale of a polysaccharide hydrogel are presented, and the impact on their interactions with biological systems is discussed. Finally, a perspective of the anticipated development of the whole field and how the further utilization of hydrogel-forming polysaccharides extracted from algae can revolutionize the current algae industry are suggested.
Collapse
Affiliation(s)
- Marco Beaumont
- Queensland
University of Technology, Brisbane, Australia
| | - Remy Tran
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Grace Vera
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Dennis Niedrist
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Aurelie Rousset
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - Ronan Pierre
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - V. Prasad Shastri
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
- Centre
for Biological Signalling Studies, University
of Freiburg, Frieburg, Germany
| | - Aurelien Forget
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Song P, Zhou F, Li F, Han Z, Wang L, Xu J, Zhang B, Wang M, Fan J, Zhang B. Superfine pulverisation pretreatment to enhance crystallinity of cellulose from Lycium barbarum L. leaves. Carbohydr Polym 2021; 253:117207. [PMID: 33278976 DOI: 10.1016/j.carbpol.2020.117207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/19/2020] [Accepted: 10/03/2020] [Indexed: 12/25/2022]
Abstract
Superfine pulverisation (SFP) pretreatment of Lycium barbarum L. leaves was performed to obtain highly crystalline cellulose. Compared with other common pulverisation methods, SFP enhanced cellulosic crystallinity by 18.3 % and 8.4 %, with and without post-acid treatments, respectively. XRD and solid-state NMR analyses showed that SFP facilitated the exposure of amorphous substances (i.e., hemicellulose and lignin) to NaOH and H2O2. Large amounts of silicon (5.5 %) and aluminium (2.1 %) were found to incorporate into the crystalline regions of SFP-produced cellulose. Further FTIR and thermogravimetric analyses revealed that SFP-produced cellulose contained large amounts of hydroxyl groups, affecting the cellulosic crystallinity and thermal stability. These findings demonstrate the potential for SFP to serve as a green technology for production of highly crystalline and mineral-rich cellulose.
Collapse
Affiliation(s)
- Peize Song
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Fa Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Feiyang Li
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Zhe Han
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Lan Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Jiana Xu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Bo Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Mengze Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Junfeng Fan
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China.
| | - Bolin Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
16
|
Kono H, Uno T, Tsujisaki H, Matsushima T, Tajima K. Nanofibrillated Bacterial Cellulose Modified with (3-Aminopropyl)trimethoxysilane under Aqueous Conditions: Applications to Poly(methyl methacrylate) Fiber-Reinforced Nanocomposites. ACS OMEGA 2020; 5:29561-29569. [PMID: 33225187 PMCID: PMC7676300 DOI: 10.1021/acsomega.0c04533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 05/08/2023]
Abstract
The development of eco-friendly fiber-reinforced composite resins is an important objective from an environmental perspective, and nanofibrillated bacterial cellulose (NFBC), with extremely long high-aspect-ratio fibers, is a filler material with high potential for use in such composite resins. In this study, we investigated chemical modification of the surfaces of NFBC fibers by coupling with (3-aminopropyl)trimethoxysilane and fabricated nanocomposite materials using the prepared surface-modified NFBC. The product prepared by the one-pot reaction of (3-aminopropyl)trimethoxysilane with NFBC microfibrils dispersed in aqueous acid retained the same nanofibril structure as the intact NFBC. The degree of molar substitution and the silicon states on the surface of the product depended on the NFBC/(3-aminopropyl)trimethoxysilane ratio. The thermal analysis revealed that the thermal degradation temperature of the products increases with an increase of degree of molar substitution. Highly transparent (78-89% at 600 nm) poly(methyl methacrylate)-based nanocomposites were prepared by solvent casting; the nanocomposite containing 1.0 wt % (3-aminopropyl)trimethoxysilylated NFBC was only 8% less transparent than neat poly(methyl methacrylate) at 600 nm. In addition, the tensile strength of the nanocomposite was more than twice that of neat poly(methyl methacrylate) when 1 wt % of the surface-modified NFBC was added. The surface-modified NFBC is expected to be a reinforcing nanofiber material that imparts excellent physical properties to fiber-reinforced resins.
Collapse
Affiliation(s)
- Hiroyuki Kono
- Division
of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
- . Tel/Fax: +81 144 67 8036
| | - Taiki Uno
- Division
of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
| | - Haruto Tsujisaki
- Division
of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
| | - Tokuo Matsushima
- Kusano
Sakko Inc., Nishimachi
16, Kamiebetsu, Ebetsu, Hokkaido 067 0063, Japan
| | - Kenji Tajima
- Faculty
of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido 060
8628, Japan
- .
Tel/Fax: +81 11 706 6603
| |
Collapse
|
17
|
Chemical Modification of Cellulose Microfibres to Reinforce Poly(methyl methacrylate) Used for Dental Application. MATERIALS 2020; 13:ma13173807. [PMID: 32872190 PMCID: PMC7503994 DOI: 10.3390/ma13173807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
The mechanical properties of dental acrylic resins have to be improved in the case of a thin denture plate. This can be achieved by cellulose addition, playing the role of active filler. But to provide the excellent dispersion of cellulose microfibres within the hydrophobic polymer matrix, its surface has to be modified. Cellulose microfibres with average length from 8 to 30 μm were modified with octyltriethoxysilane and (3-methacryloxypropyl)methyldimethoxysilane. The latter also participated in the polymerisation reaction of methyl methacrylate. Dental composites were prepared following the general procedure provided by the supplier. The successful modification of the microfibres led to the improved compatibility of the cellulose and poly(methyl methacrylate). The fibres after modification were uniformly distributed within the matrix, resulting in the improved mechanical performance of obtained materials. Cellulose microfibres are good candidates for the dental materials to be used as the active filler. The simple and straightforward approach for the cellulose modifications with silanes provides good potential for its future practical application.
Collapse
|
18
|
Krishnamurthy M, Lobo NP, Samanta D. Improved Hydrophobicity of a Bacterial Cellulose Surface: Click Chemistry in Action. ACS Biomater Sci Eng 2020; 6:879-888. [PMID: 33464860 DOI: 10.1021/acsbiomaterials.9b01571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vast application potentials of bacterial cellulose (BC)-based materials for developing leather-like materials, wound-healing materials and electronic materials have been realized very recently. Surface functionalization of these materials can help in improvement of certain properties such as water repellency, mechanical strength, and so forth. In this paper, we reported functionalization of BC surfaces using "click" polymerization for the first time. By this methodology, dense aromatic groups have been incorporated for the improvement of hydrophobicity. For comparative studies, various fluorine-based compounds have been introduced using conventional click reactions. The surface-modified BC materials have been confirmed by various spectroscopic methods. Particularly, the chemical structures of the materials were studied by solid-state 13C NMR spectroscopy and attenuated total reflection-infrared spectroscopy. X-ray photoelectron spectroscopy was used to study the elemental composition of the materials. Moreover, the crystallite changes of modified BC surfaces were investigated by X-ray diffraction. Further, the changes in the morphology of the material after functionalization were evaluated by scanning electron microscopy and atomic force microscopy. Finally, water contact angle measurement revealed manyfold increase in hydrophobicity after click polymerization. A video is also provided in the Supporting Information to show the application potential of this material for developing leather-like materials.
Collapse
Affiliation(s)
- Munusamy Krishnamurthy
- Polymer Science &Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Nitin Prakash Lobo
- NMR Laboratory, Inorganic & Physical Chemistry, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Debasis Samanta
- Polymer Science &Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
19
|
Koschella A, Chien C, Iwata T, Thonhofer MS, Wrodnigg TM, Heinze T. All Sugar Based Cellulose Derivatives Synthesized by Azide–Alkyne Click Chemistry. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andreas Koschella
- Center of Excellence for Polysaccharide Research Institute for Organic Chemistry and Macromolecular Chemistry Friedrich‐Schiller University of Jena Humboldtstraße 10 07743 Jena Germany
| | - Chih‐Ying Chien
- Center of Excellence for Polysaccharide Research Institute for Organic Chemistry and Macromolecular Chemistry Friedrich‐Schiller University of Jena Humboldtstraße 10 07743 Jena Germany
- Science of Polymeric Materials Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences The University of Tokyo 1‐1‐1 Yayoi, Bunkyo‐ku Tokyo 113‐8657 Japan
| | - Tadahisa Iwata
- Science of Polymeric Materials Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences The University of Tokyo 1‐1‐1 Yayoi, Bunkyo‐ku Tokyo 113‐8657 Japan
| | - Martin S. Thonhofer
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Tanja M. Wrodnigg
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research Institute for Organic Chemistry and Macromolecular Chemistry Friedrich‐Schiller University of Jena Humboldtstraße 10 07743 Jena Germany
| |
Collapse
|
20
|
Kritchenkov IS, Chelushkin PS, Sokolov VV, Pavlovskiy VV, Porsev VV, Evarestov RA, Tunik SP. Near-Infrared [Ir(N∧C)2(N∧N)]+ Emitters and Their Noncovalent Adducts with Human Serum Albumin: Synthesis and Photophysical and Computational Study. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ilya S. Kritchenkov
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Pavel S. Chelushkin
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Viktor V. Sokolov
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Vladimir V. Pavlovskiy
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Vitaly V. Porsev
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Robert A. Evarestov
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Sergey P. Tunik
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
21
|
Cellulose dissolution in diallylimidazolium methoxyacetate + N-methylpyrrolidinone mixture. Sci Rep 2019; 9:11518. [PMID: 31395927 PMCID: PMC6687689 DOI: 10.1038/s41598-019-48066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
The utilization of cellulose in industrial applicat is of great significance to sustainable development of human society and reducing dependence on dwindling fossil resources. Nevertheless, this utilization of cellulose has actually been limited due to its insolubilization. Here, novel solvents consisting of diallylimidazolium methoxy acetate ([A2im][CH3OCH2COO]) and N-methylpyrrolidinone (NMP) were developed. The solubility of cellulose in [A2im][CH3OCH2COO]/NMP was determined, and the influence of [A2im][CH3OCH2COO]/NMP molar ratio on cellulose dissolution was systematically investigated. Meanwhile, we also presented the affecting factors of the cellulose material fabrication including preparation approach, [A2im][CH3OCH2COO] and cellulose solution concentration. Attractively, the [A2im][CH3OCH2COO]/NMP solvents display much powerful dissolution capacity for cellulose even at 25 °C (25.4 g 100 g−1). This is mainly ascribed to the combined factors: The hydrogen bond interactions of the H2, H4 and H6 in [A2im]+ and carboxyl O atom in [CH3OCH2COO]− with the hydroxyl H atom and O atom in cellulose; the dissociation of NMP towards [A2im][CH3OCH2COO]; the stabilization of NMP towards the dissolved cellulose chains. In addition, the thermostability and chemical structure of the regenerated cellulose from the solvents was also estimated.
Collapse
|
22
|
|
23
|
Córdova A, Afewerki S, Alimohammadzadeh R, Sanhueza I, Tai CW, Osong SH, Engstrand P, Ibrahem I. A sustainable strategy for production and functionalization of nanocelluloses. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A sustainable strategy for the neat production and surface functionalization of nanocellulose from wood pulp is disclosed. It is based on the combination of organocatalysis and click chemistry (“organoclick” chemistry) and starts with nanocellulose production by organic acid catalyzed hydrolysis and esterification of the pulp under neat conditions followed by homogenization. This nanocellulose fabrication route is scalable, reduces energy consumption and the organic acid can be efficiently recycled. Next, the surface is catalytically engineered by “organoclick” chemistry, which allows for selective and versatile attachment of different organic molecules (e.g. fluorescent probes, catalyst and pharmaceuticals). It also enables binding of metal ions and nanoparticles. This was exemplified by the fabrication of a heterogeneous nanocellulose-palladium nanoparticle catalyst, which is used for Suzuki cross-coupling transformations in water. The disclosed surface functionalization methodology is broad in scope and applicable to different nanocelluloses and cellulose based materials as well.
Collapse
Affiliation(s)
- Armando Córdova
- Department of Natural Sciences , Mid Sweden University , Holmgatan 10 , Sundsvall 85170 , Sweden
| | - Samson Afewerki
- Department of Natural Sciences , Mid Sweden University , Holmgatan 10 , Sundsvall 85170 , Sweden
| | - Rana Alimohammadzadeh
- Department of Natural Sciences , Mid Sweden University , Holmgatan 10 , Sundsvall 85170 , Sweden
| | - Italo Sanhueza
- Department of Natural Sciences , Mid Sweden University , Holmgatan 10 , Sundsvall 85170 , Sweden
| | - Cheuk-Wai Tai
- Department of Material Sciences, Arrhenius Laboratory , Stockholm University , Stockholm 106 91 , Sweden
| | - Sinke H. Osong
- Department of Chemical Engineering , Mid Sweden University , Holmgatan 10 , Sundsvall 85170 , Sweden
| | - Per Engstrand
- Department of Chemical Engineering , Mid Sweden University , Holmgatan 10 , Sundsvall 85170 , Sweden
| | - Ismail Ibrahem
- Department of Natural Sciences , Mid Sweden University , Holmgatan 10 , Sundsvall 85170 , Sweden
| |
Collapse
|
24
|
A General Aqueous Silanization Protocol to Introduce Vinyl, Mercapto or Azido Functionalities onto Cellulose Fibers and Nanocelluloses. Molecules 2018; 23:molecules23061427. [PMID: 29895798 PMCID: PMC6100551 DOI: 10.3390/molecules23061427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022] Open
Abstract
The effective and straight-forward modification of nanostructured celluloses under aqueous conditions or as “never-dried” materials is challenging. We report a silanization protocol in water using catalytic amounts of hydrogen chloride and then sodium hydroxide in a two-step protocol. The acidic step hydrolyzes the alkoxysilane to obtain water-soluble silanols and the subsequent addition of catalytic amounts of NaOH induces a covalent reaction between cellulose surficial hydroxyl groups and the respective silanols. The developed protocol enables the incorporation of vinyl, thiol, and azido groups onto cellulose fibers and cellulose nanofibrils. In contrast to conventional methods, no curing or solvent-exchange is necessary, thereby the functionalized celluloses remain never-dried, and no agglomeration or hornification occurs in the process. The successful modification was proven by solid state NMR, ATR-IR, and EDX spectroscopy. In addition, the covalent nature of this bonding was shown by gel permeation chromatography of polyethylene glycol grafted nanofibrils. By varying the amount of silane agents or the reaction time, the silane loading could be tuned up to an amount of 1.2 mmol/g. Multifunctional materials were obtained either by prior carboxymethylation and subsequent silanization; or by simultaneously incorporating both vinyl and azido groups. The protocol reported here is an easy, general, and straight-forward avenue for introduction of anchor groups onto the surface of never-dried celluloses, ready for click chemistry post-modification, to obtain multifunctional cellulose substrates for high-value applications.
Collapse
|
25
|
Afewerki S, Alimohammadzadeh R, Osong SH, Tai C, Engstrand P, Córdova A. Sustainable Design for the Direct Fabrication and Highly Versatile Functionalization of Nanocelluloses. GLOBAL CHALLENGES (HOBOKEN, NJ) 2017; 1:1700045. [PMID: 31565287 PMCID: PMC6607377 DOI: 10.1002/gch2.201700045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/25/2017] [Indexed: 06/10/2023]
Abstract
This study describes a novel sustainable concept for the scalable direct fabrication and functionalization of nanocellulose from wood pulp with reduced energy consumption. A central concept is the use of metal-free small organic molecules as mediators and catalysts for the production and subsequent versatile surface engineering of the cellulosic nanomaterials via organocatalysis and click chemistry. Here, "organoclick" chemistry enables the selective functionalization of nanocelluloses with different organic molecules as well as the binding of palladium ions or nanoparticles. The nanocellulosic material is also shown to function as a sustainable support for heterogeneous catalysis in modern organic synthesis (e.g., Suzuki cross-coupling transformations in water). The reported strategy not only addresses obstacles and challenges for the future utilization of nanocellulose (e.g., low moisture resistance, the need for green chemistry, and energy-intensive production) but also enables new applications for nanocellulosic materials in different areas.
Collapse
Affiliation(s)
- Samson Afewerki
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| | - Rana Alimohammadzadeh
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| | - Sinke H. Osong
- Department of Chemical EngineeringMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| | - Cheuk‐Wai Tai
- Department of Materials and Environmental ChemistryThe Arrhenius LaboratoryStockholm University106 91StockholmSweden
| | - Per Engstrand
- Department of Chemical EngineeringMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| | - Armando Córdova
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| |
Collapse
|