1
|
Berdugo-Díaz CE, Manetsch MT, Sik Yun Y, Lee J, Luo J, Chen X, Flaherty DW. Ester Reduction with H 2 on Bifunctional Metal-Acid Catalysts: Implications of Metal Identity on Rates and Selectivities. Angew Chem Int Ed Engl 2023; 62:e202216165. [PMID: 36755505 DOI: 10.1002/anie.202216165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
Esters reduce to form ethers and alcohols on contact with metal nanoparticles supported on Brønsted acidic faujasite (M-FAU) that cleave C-O bonds by hydrogenation and hydrogenolysis pathways. Rates and selectivities for each pathway depend on the metal identity (M=Co, Ni, Cu, Ru, Rh, Pd, and Pt). Pt-FAU gives propyl acetate consumption rates up to 100 times greater than other M-FAU catalysts and provides an ethyl propyl ether selectivity of 34 %. Measured formation rates, kinetic isotope effects, and site titrations suggest that ester reduction involves a bifunctional mechanism that implicates the stepwise addition of H* atoms to the carbonyl to form hemiacetals on the metal sites, followed by hemiacetal diffusion to a nearby Brønsted acid site to dehydrate to ethers or decompose to alcohol and aldehyde. The rates of reduction of propyl acetate appear to be determined by the H* addition to the carbonyl and by the C-O cleavage of hemiacetal.
Collapse
Affiliation(s)
- Claudia E Berdugo-Díaz
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Melissa T Manetsch
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Sik Yun
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.,C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jieun Lee
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing Luo
- Core R&D, The Dow Chemical Company, Midland, MI 48674, USA
| | - Xue Chen
- Dow Industrial Solutions, The Dow Chemical Company, Freeport, TX 77566, USA
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Huang Z, Zeng Z, Zhu X, Zhao W, Lei J, Xu Q, Yang Y, Liu X. Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Berdugo-Díaz CE, Yun YS, Manetsch MT, Luo J, Barton DG, Chen X, Flaherty DW. Pathways for Reactions of Esters with H 2 over Supported Pd Catalysts: Elementary Steps, Site Requirements, and Particle Size Effects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claudia E. Berdugo-Díaz
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yang Sik Yun
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Melissa T. Manetsch
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jing Luo
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - David G. Barton
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Xue Chen
- Dow Industrial Solutions, The Dow Chemical Company, Freeport, Texas 77566, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
The importance of Brønsted acid sites on C O bond rupture selectivities during hydrogenation and hydrogenolysis of esters. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Sakoda K, Yamaguchi S, Mitsudome T, Mizugaki T. Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt-Mo Catalyst. JACS AU 2022; 2:665-672. [PMID: 35373194 PMCID: PMC8965830 DOI: 10.1021/jacsau.1c00535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 05/13/2023]
Abstract
The catalytic hydrodeoxygenation (HDO) of carbonyl oxygen in esters using H2 is an attractive method for synthesizing unsymmetrical ethers because water is theoretically the sole coproduct. Herein, we report a heterogeneous catalytic system for the selective HDO of esters to unsymmetrical ethers over a zirconium oxide-supported platinum-molybdenum catalyst (Pt-Mo/ZrO2). A wide range of esters were transformed into the corresponding unsymmetrical ethers under mild reaction conditions (0.5 MPa H2 at 100 °C). The Pt-Mo/ZrO2 catalyst was also successfully applied to the conversion of a biomass-derived triglyceride into the corresponding triether. Physicochemical characterization and control experiments revealed that cooperative catalysis between Pt nanoparticles and neighboring molybdenum oxide species on the ZrO2 surface plays a key role in the highly selective HDO of esters. This Pt-Mo/ZrO2 catalyst system offers a highly efficient strategy for synthesizing unsymmetrical ethers and broadens the scope of sustainable reaction processes.
Collapse
Affiliation(s)
- Katsumasa Sakoda
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Sho Yamaguchi
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takato Mitsudome
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- PRESTO,
Japan Science and Technology Agency (JST), Kawaguchi, Saitama 333-0012, Japan
| | - Tomoo Mizugaki
- Department
of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Tang SW, Chan C, Mohd NK, Lim WH, Hoong SS, Tuan Ismail TNM, Yeong SK. Synthesis and Physicochemical Properties of Low Viscosity 2‐Ethylhexyl Alkyl Ethers Made from Palm‐Based Esters as Potential Biolubricant. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sook Wah Tang
- Advanced Oleochemical Technology Division (AOTD) Malaysian Palm Oil Board (MPOB) 6, Persiaran Institusi, Bandar Baru Bangi Kajang Selangor 43000 Malaysia
| | - Chung‐Hung Chan
- Advanced Oleochemical Technology Division (AOTD) Malaysian Palm Oil Board (MPOB) 6, Persiaran Institusi, Bandar Baru Bangi Kajang Selangor 43000 Malaysia
| | - Noor Khairin Mohd
- Advanced Oleochemical Technology Division (AOTD) Malaysian Palm Oil Board (MPOB) 6, Persiaran Institusi, Bandar Baru Bangi Kajang Selangor 43000 Malaysia
| | - Wen Huei Lim
- Advanced Oleochemical Technology Division (AOTD) Malaysian Palm Oil Board (MPOB) 6, Persiaran Institusi, Bandar Baru Bangi Kajang Selangor 43000 Malaysia
| | - Seng Soi Hoong
- Advanced Oleochemical Technology Division (AOTD) Malaysian Palm Oil Board (MPOB) 6, Persiaran Institusi, Bandar Baru Bangi Kajang Selangor 43000 Malaysia
| | - Tuan Noor Maznee Tuan Ismail
- Advanced Oleochemical Technology Division (AOTD) Malaysian Palm Oil Board (MPOB) 6, Persiaran Institusi, Bandar Baru Bangi Kajang Selangor 43000 Malaysia
| | - Shoot Kian Yeong
- Advanced Oleochemical Technology Division (AOTD) Malaysian Palm Oil Board (MPOB) 6, Persiaran Institusi, Bandar Baru Bangi Kajang Selangor 43000 Malaysia
| |
Collapse
|
7
|
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO 2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021; 14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Ether derivatives have myriad applications in several areas of chemical industry and academia. Hence, the development of more effective and sustainable protocols for their production is highly desired. Among the different methodologies reported for ether synthesis, catalytic reductive alcohol etherifications with carbonyl-based moieties (aldehydes/ketones and carboxylic acid derivatives) have emerged in the last years as a potential tool. These processes constitute appealing routes for the selective production of both symmetrical and asymmetrical ethers (including O-heterocycles) with an increased molecular complexity. Likewise, ester-to-ether catalytic reductions and hydrogenative alcohol etherifications with CO2 to dialkoxymethanes and other acetals, albeit in less extent, have undergone important advances, too. In this Review, an update of the recent progresses in the area of catalytic reductive alcohol etherifications using carbonyl-based compounds and CO2 have been described with a special focus on organic synthetic applications and catalyst design. Complementarily, recent progress made in catalytic acetal/ketal-to-ether or ester-to-ether reductions and other related transformations have been also summarized.
Collapse
Affiliation(s)
- Carles Lluna‐Galán
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Luis Izquierdo‐Aranda
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Rosa Adam
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Jose R. Cabrero‐Antonino
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
8
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angew Chem Int Ed Engl 2021; 60:20144-20165. [PMID: 33617111 PMCID: PMC8453566 DOI: 10.1002/anie.202100778] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Oils and fats of vegetable and animal origin remain an important renewable feedstock for the chemical industry. Their industrial use has increased during the last 10 years from 31 to 51 million tonnes annually. Remarkable achievements made in the field of oleochemistry in this timeframe are summarized herein, including the reduction of fatty esters to ethers, the selective oxidation and oxidative cleavage of C-C double bonds, the synthesis of alkyl-branched fatty compounds, the isomerizing hydroformylation and alkoxycarbonylation, and olefin metathesis. The use of oleochemicals for the synthesis of a great variety of polymeric materials has increased tremendously, too. In addition to lipases and phospholipases, other enzymes have found their way into biocatalytic oleochemistry. Important achievements have also generated new oil qualities in existing crop plants or by using microorganisms optimized by metabolic engineering.
Collapse
Affiliation(s)
- Ursula Biermann
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Ivo Feussner
- University of GoettingenAlbrecht-von-Haller Institute for Plant SciencesInternational Center for Advanced Studies of Energy Conversion (ICASEC) and Goettingen Center of Molecular Biosciences (GZMB)Dept. of Plant BiochemistryJustus-von-Liebig-Weg 1137077GoettingenGermany
| | - Michael A. R. Meier
- Laboratory of Applied ChemistryInstitute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Straße am Forum 776131KarlsruheGermany
- Laboratory of Applied ChemistryInstitute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Jürgen O. Metzger
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| |
Collapse
|
9
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fettsäuren und Fettsäurederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ursula Biermann
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Ivo Feussner
- Universität Göttingen Albrecht-von-Haller Institut für Pflanzenwissenschaften International Center for Advanced Studies of Energy Conversion (ICASEC) und Göttinger Zentrum für Molekulare Biowissenschaften (GZMB) Abt. für die Biochemie der Pflanze Justus-von-Liebig-Weg 11 37077 Göttingen Deutschland
| | - Michael A. R. Meier
- Labor für Angewandte Chemie Institut für Organische Chemie (IOC) Karlsruher Institut für Technology (KIT) Straße am Forum 7 76131 Karlsruhe Deutschland
- Labor für Angewandte Chemie Institut für biologische und chemische Systeme –, Funktionale Molekülsysteme (IBCS-FMS) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Jürgen O. Metzger
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| |
Collapse
|
10
|
Yun YS, Berdugo-Díaz CE, Flaherty DW. Advances in Understanding the Selective Hydrogenolysis of Biomass Derivatives. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yang Sik Yun
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Claudia E. Berdugo-Díaz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Kumar A, Gao C. Homogeneous (De)hydrogenative Catalysis for Circular Chemistry – Using Waste as a Resource. ChemCatChem 2020. [DOI: 10.1002/cctc.202001404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Amit Kumar
- School of Chemistry University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Chang Gao
- School of Chemistry University of St. Andrews North Haugh St. Andrews KY169ST UK
| |
Collapse
|
12
|
Rysak V, Dixit R, Trivelli X, Merle N, Agbossou-Niedercorn F, Vanka K, Michon C. Catalytic reductive deoxygenation of esters to ethers driven by hydrosilane activation through non-covalent interactions with a fluorinated borate salt. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00775g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorinated borate BArF salt catalyses the reductive deoxygenation of esters to ethers by using hydrosilanes. Experimental and theoretical studies highlight the role of noncovalent interactions in the reaction mechanism.
Collapse
Affiliation(s)
- Vincent Rysak
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | - Ruchi Dixit
- Physical and Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | - Nicolas Merle
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | | | - Kumar Vanka
- Physical and Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Christophe Michon
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| |
Collapse
|
13
|
Stadler BM, Hinze S, Tin S, de Vries JG. Hydrogenation of Polyesters to Polyether Polyols. CHEMSUSCHEM 2019; 12:4082-4087. [PMID: 31332956 PMCID: PMC6771520 DOI: 10.1002/cssc.201901210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/22/2019] [Indexed: 05/21/2023]
Abstract
The amount of plastic waste is continuously increasing. Besides conventional recycling, one solution to deal with this problem could be to use this waste as a resource for novel materials. In this study, polyesters are hydrogenated to give polyether polyols by using in situ-generated Ru-Triphos catalysts in combination with Lewis acids. The choice of Lewis acid and its concentration relative to the ruthenium catalyst are found to determine the selectivity of the reaction. Monitoring of the molecular weight during the reaction confirms a sequential mechanism in which the diols that are formed by hydrogenation are etherified to the polyethers. To probe the applicability of this tandem hydrogenation etherification approach, a range of polyester substrates is investigated. The oligoether products that form in these reactions have the chain lengths that are appropriate for application in the adhesives and coatings industries. This strategy makes polyether polyols accessible that are otherwise difficult to obtain from conventional fossil-based feedstocks.
Collapse
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| | - Sandra Hinze
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| | - Sergey Tin
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| |
Collapse
|
14
|
Rorrer JE, Bell AT, Toste FD. Synthesis of Biomass-Derived Ethers for Use as Fuels and Lubricants. CHEMSUSCHEM 2019; 12:2835-2858. [PMID: 31232521 DOI: 10.1002/cssc.201900535] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Ethers synthesized from biomass-derived compounds have exceptional properties as fuels, lubricants, and specialty chemicals and can serve as replacements for petroleum-derived products. Recent efforts have identified heterogeneous catalysts for the selective synthesis of ethers from alcohols, aldehydes, ketones, furans, esters, olefins, carboxylic acids, and other molecules derived from biomass. This Review highlights the scope of etherification reactions and provides insights into the choice of catalysts and reaction conditions best suited for producing targeted ethers from the available starting materials. First, the properties of ethers for specific applications and the methods by which synthons for ether synthesis can be obtained from biomass are discussed. Then the progress that has been made on the synthesis of ethers via the following methods is summarized: direct etherification of alcohols; reductive etherification of alcohols with aldehydes or ketones; etherification of furanic compounds, esters, and carboxylic acids; and the addition of alcohols to olefins. Next, the mechanisms of these reactions and catalyst properties required to promote them are discussed, with the goal of understanding how reaction conditions can be tuned to optimize catalyst activity and selectivity towards desired ethers. The Review closes by examining the tradeoffs between catalyst selectivity, activity, stability, and reaction conditions required to achieve the most economically and environmentally favorable routes to biomass-derived ethers.
Collapse
Affiliation(s)
- Julie E Rorrer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - F Dean Toste
- Department of Chemistry, University of California Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
15
|
Petuker A, Reback ML, Apfel U. Carbon/Silicon Exchange at the Apex of Diphos‐ and Triphos‐Derived Ligands – More Than Just a Substitute? Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anette Petuker
- Ruhr University Bochum Inorganic Chemistry I ‐ Bioinorganic Chemistry Universitätsstraße 150 44801 Bochum Germany
| | - Matthew L. Reback
- Ruhr University Bochum Inorganic Chemistry I ‐ Bioinorganic Chemistry Universitätsstraße 150 44801 Bochum Germany
| | - Ulf‐Peter Apfel
- Ruhr University Bochum Inorganic Chemistry I ‐ Bioinorganic Chemistry Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
16
|
Petuker A, Gerschel P, Piontek S, Ritterskamp N, Wittkamp F, Iffland L, Miller R, van Gastel M, Apfel UP. Spectroscopic and reactivity differences in metal complexes derived from sulfur containing Triphos homologs. Dalton Trans 2017; 46:13251-13262. [DOI: 10.1039/c7dt01459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectroscopic, computational, and reactivity studies shed light on the different coordination behavior of sulfur containing Triphos derived complexes.
Collapse
Affiliation(s)
- A. Petuker
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - P. Gerschel
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - S. Piontek
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - N. Ritterskamp
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - F. Wittkamp
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - L. Iffland
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - R. Miller
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| | - M. van Gastel
- Max-Planck-Institut für Chemische Energiekonversion
- 45470 Mülheim
- Germany
| | - U.-P. Apfel
- Anorganische Chemie I
- Ruhr-Universität Bochum
- D-44801 Bochum
- Germany
| |
Collapse
|