1
|
Díaz-García AK, Gómez R. A WO 3-CuCrO 2 Tandem Photoelectrochemical Cell for Green Hydrogen Production under Simulated Sunlight. Molecules 2024; 29:4462. [PMID: 39339456 PMCID: PMC11434413 DOI: 10.3390/molecules29184462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The development of photoelectrochemical tandem cells for water splitting with electrodes entirely based on metal oxides is hindered by the scarcity of stable p-type oxides and the poor stability of oxides in strongly alkaline and, particularly, strongly acidic electrolytes. As a novelty in the context of transition metal oxide photoelectrochemistry, a bias-free tandem cell driven by simulated sunlight and based on a CuCrO2 photocathode and a WO3 photoanode, both unprotected and free of co-catalysts, is demonstrated to split water while working with strongly acidic electrolytes. Importantly, the Faradaic efficiency for H2 evolution for the CuCrO2 electrode is found to be about 90%, among the highest for oxide photoelectrodes in the absence of co-catalysts. The tandem cell shows no apparent degradation in short-to-medium-term experiments. The prospects of using a practical cell based on this configuration are discussed, with an emphasis on the importance of modifying the materials for enhancing light absorption.
Collapse
Affiliation(s)
- Ana K. Díaz-García
- Institut Universitari d’Electroquímica i Departament de Química Física, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain;
- Facultad de Bioanálisis, Universidad Veracruzana, Xalapa C.P. 91010, Mexico
| | - Roberto Gómez
- Institut Universitari d’Electroquímica i Departament de Química Física, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain;
| |
Collapse
|
2
|
Sun X, Lan Z, Wang M, Geng Q, Lv X, Li M. Multifunctional Role of Ag-Substitution in Enhancing the Photoelectrochemical Properties of LaFeO 3 Photocathodes. CHEMSUSCHEM 2023; 16:e202300645. [PMID: 37438975 DOI: 10.1002/cssc.202300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Earth-abundant LaFeO3 is a promising p-type semiconductor for photoelectrochemical cells due to its stable photoresponses, high photovoltages and appropriate band alignments, but the photoelectrochemical properties of LaFeO3 , especially the incident-photon-to-current conversion efficiency, need to be further improved. Herein, we propose to partially substitute La3+ of LaFeO3 with Ag+ to enhance the photoelectrochemical performance of LaFeO3 . The combined experimental and computational studies show that Ag-substitution improves surface charge transfer kinetics through introducing active electronic states and increasing electrochemically active surface areas. Furthermore, Ag-substitution decreases grain boundary number and increases majority carrier density, which promotes bulk charge transports. Ag-substitution also reduces the bandgap energy, increasing the flux of carriers involved in photoelectrochemical reactions. As a result, after 8 % Ag-substitution, the photocurrent density of LaFeO3 is enhanced by more than 6 times (-0.64 mA cm-2 at 0.5 V vs RHE) in the presence of oxygen, which is the highest photocurrent gain compared with other cation substitution or doping. The corresponding photocurrent onset potential also demonstrates a positive shift of 30 mV. This work highlights the versatile effects of Ag-substitution on the photoelectrochemical properties of LaFeO3 , which can provide useful insights into the mechanism of enhanced photoelectrochemical performance by doping or substitution.
Collapse
Affiliation(s)
- Xin Sun
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Zhineng Lan
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Min Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Qi Geng
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Xiaojun Lv
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
3
|
Nazir A, Imran M, Kanwal F, Latif S, Javaid A, Kim TH, Boczkaj G, Shami A, Iqbal H. Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles. ENVIRONMENTAL RESEARCH 2023; 231:116241. [PMID: 37244493 DOI: 10.1016/j.envres.2023.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
In this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet-Visible (UV-Vis), X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR), Raman, Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), and photoluminescence (PL) techniques to study the effects of the templates on the tunable properties of lanthanum ferrite nanoparticles. The UV-Vis study revealed a remarkably small bandgap (2.09 eV) of LFOCo-So compared to the LFOCo-Mo having a band gap of 2.46 eV. XRD analysis revealed a single-phased structure of LFOCo-So, whereas LFOCo-Mo showed different phases. The calculated crystallite sizes of LFOCo-So and LFOCo-Mo were 22 nm and 39 nm, respectively. FTIR spectroscopy indicated the characteristics of metal-oxygen vibrations of perovskites in both lanthanum ferrite (LFO) nanoparticles, whereas a slight shifting of Raman scattering modes in LFOCo-Mo in contrast to LFOCo-So showed the octahedral distortion of the perovskite by changing the template. SEM micrographs indicated porous particles of lanthanum ferrite with LFOCo-So being more uniformly distributed, and EDX confirmed the stoichiometric ratios of the lanthanum, iron, and oxygen in the fabricated lanthanum ferrite. The high-intensity green emission in the photoluminescence spectrum of LFOCo-So indicated more prominent oxygen vacancies than LFOCo-Mo. The photocatalytic efficiency of synthesized LFOCo-So and LFOCo-Mo was investigated against cefadroxil drug under solar light irradiation. At optimized photocatalytic conditions, LFOCo-So showed higher degradation efficiency of 87% in only 20 min than LFOCo-Mo having photocatalytic activity of 81%. The excellent recyclability of the LFOCo-So reflected that it could be reused without affecting photocatalytic efficiency. These findings showed that sorbitol is a useful template for the lanthanum ferrite particles imparting outstanding features, enabling it to be used as an efficient photocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Ammara Nazir
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan.
| | - Farah Kanwal
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland; EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland
| | - Ashwag Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Hafiz Iqbal
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
4
|
Xu X, Li Y, Liu C, Zhang P, Fan K, Wu X, Shan Y, Li F. Optimized H 2-evolving dye-sensitized LaFeO 3 photocathodes prepared via the layer-by-layer assembly of dyes and catalysts. Dalton Trans 2023; 52:5848-5853. [PMID: 37092596 DOI: 10.1039/d3dt00542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A molecular dye and a molecular catalyst were loaded onto the surface of a mesoporous LaFeO3 (LFO) film via layer-by-layer assembly relying on the coordination of phosphates and Zr4+. After assembling six layers of the dye and four layers of the catalyst, the (NiP-4 + PQA-6)@LFO photocathode exhibited a significant photocurrent for light-driven H2 generation.
Collapse
Affiliation(s)
- Ximeng Xu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Yingzheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Yu Shan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| |
Collapse
|
5
|
Chertkova VP, Iskortseva AN, Pazhetnov EM, Arkharova NA, Ryazantsev SV, Levin EE, Nikitina VA. Evaluation of the Efficiency of Photoelectrochemical Activity Enhancement for the Nanostructured LaFeO 3 Photocathode by Surface Passivation and Co-Catalyst Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234327. [PMID: 36500950 PMCID: PMC9741200 DOI: 10.3390/nano12234327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
Perovskite-type lanthanum iron oxide, LaFeO3, is a promising photocathode material that can achieve water splitting under visible light. However, the performance of this photoelectrode material is limited by significant electron-hole recombination. In this work, we explore different strategies to optimize the activity of a nanostructured porous LaFeO3 film, which demonstrates enhanced photoelectrocatalytic activity due to the reduced diffusion length of the charge carriers. We found that surface passivation is not an efficient approach for enhancing the photoelectrochemical performance of LaFeO3, as it is sufficiently stable under photoelectrocatalytic conditions. Instead, the deposition of a Pt co-catalyst was shown to be essential for maximizing the photoelectrochemical activity both in hydrogen evolution and oxygen reduction reactions. Illumination-induced band edge unpinning was found to be a major challenge for the further development of LaFeO3 photocathodes for water-splitting applications.
Collapse
Affiliation(s)
| | - Aleksandra N. Iskortseva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Egor M. Pazhetnov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | - Sergey V. Ryazantsev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Eduard E. Levin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- FSRC “Crystallography and Photonics” RAS, Moscow 119333, Russia
| | - Victoria A. Nikitina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
6
|
Sun X, Tiwari D, Li M, Fermin DJ. Decoupling the impact of bulk and surface point defects on the photoelectrochemical properties of LaFeO 3 thin films. Chem Sci 2022; 13:11252-11259. [PMID: 36320475 PMCID: PMC9517707 DOI: 10.1039/d2sc04675j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Point defects (PDs) play a key role in the properties of semiconductor photoelectrodes, from doping density to carrier mobility and lifetime. Although this issue has been extensively investigated in the context of photovoltaic absorbers, the role of PDs in photoelectrodes for solar fuels remains poorly understood. In perovskite oxides such as LaFeO3 (LFO), PDs can be tuned by changing the cation ratio, cation substitution and oxygen content. In this paper, we report the first study on the impact of bulk and surface PDs on the photoelectrochemical properties of LFO thin films. We independently varied the La : Fe ratio, within 10% of the stoichiometric value, in the bulk and at the surface by tuning the precursor composition as well as selective acid etching. The structure and composition of thin films deposited by sol-gel methods were investigated by SEM-EDX, ICP-OES, XPS and XRD. Our analysis shows a correlation between the binding energies of Fe 2p3/2 and O 1s, establishing a link between the oxidation state of Fe and the covalency of the Fe-O bond. Electrochemical studies reveal the emergence of electronic states close to the valence band edge with decreasing bulk Fe content. DFT calculations confirm that Fe vacancies generate states located near the valence band, which act as hole-traps and recombination sites under illumination. Dynamic photocurrent responses associated with oxygen reduction and hydrogen evolution show that the stoichiometric La : Fe ratio provides the most photoactive oxide; however, this can only be achieved by independently tuning the bulk and surface compositions of the oxide.
Collapse
Affiliation(s)
- Xin Sun
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University Beijing 102206 China
| | - Devendra Tiwari
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University Ellison Building Newcastle Upon Tyne NE1 8ST UK
- School of Chemistry, University of Bristol Cantocks Close, Bristol BS8 1TS UK
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University Beijing 102206 China
| | - David J Fermin
- School of Chemistry, University of Bristol Cantocks Close, Bristol BS8 1TS UK
| |
Collapse
|
7
|
Basahel SN, Medkhali AH, Mokhtar M, Narasimharao K. Noble metal (Pd, Pt and Rh) incorporated LaFeO3 perovskite oxides for catalytic oxidative cracking of n-propane. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.11.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Zhao Z, Zhan S, Feng L, Liu C, Ahlquist MSG, Wu X, Fan K, Li F, Sun L. Molecular Engineering of Photocathodes based on Polythiophene Organic Semiconductors for Photoelectrochemical Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40602-40611. [PMID: 34403243 DOI: 10.1021/acsami.1c10561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic semiconductors provide significant potentials for the construction of photoelectrochemical (PEC) cells for solar hydrogen production because of their highly tunable properties. Herein, on carbon fiber paper (CFP) surface, pyridyl (Py), and 4,4'-bipyridin-1-ium (Py2+) groups were introduced into polythiophene (pTH) semiconductor by electrochemical copolymerization, respectively. After assembly with the Co(dmgBF2)2 type catalyst (CoB, dmgBF2 = difluoroboryldimethylglyoximate), the CoB@Py2+-pTH/CFP photocathode displayed nearly twice the photocurrent enhancement (550 μA cm-2 at 0.15 V vs reversible hydrogen electrode, RHE) comparing to that generated by the CoB@Py-pTH/CFP photocathode (290 μA cm-2 at 0.15 V vs RHE) for light-driven H2 generation under AM 1.5 solar illumination. Investigation of the mechanism revealed that the introduction of the positively charged pyridinium groups could improve the intrinsic Co(dmgBF2)2 catalyst activity for the H2 generation reaction. Meanwhile, the positively charged pyridinium groups serve as p-type dopants to increase the semiconductor bulk charge transfer rate and act as electron transfer mediators to promote the interfacial charge transfer kinetics between the catalyst and the pTH-based organic semiconductor.
Collapse
Affiliation(s)
- Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shaoqi Zhan
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lu Feng
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, P. R. China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, P. R. China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, P. R. China
| |
Collapse
|
9
|
Long X, Wang T, Jin J, Zhao X, Ma J. The enhanced water splitting activity of a ZnO-based photoanode by modification with self-doped lanthanum ferrite. NANOSCALE 2021; 13:11215-11222. [PMID: 34151924 DOI: 10.1039/d1nr02673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The difficult separation and transfer of photoexcited charge carriers in composite photoelectrodes is a decisive factor limiting the efficiencies of semiconductor-based photoelectrochemical water splitting systems. Herein, to further enhance the photoelectrochemical properties of ZnO-based photoanodes, we constructed composite ZnO nanoarray photoanodes with Fe-self-doped lanthanum ferrite (denoted as La1-xFe1+xO3/ZnO NRs), which had the effect of killing two birds with one stone. This improvement strategy differs from the previously popular multi-step modification process, and integrates the dual benefits of a heterojunction and cocatalyst using the same material, the doped LaFeO3, which bypasses the shortcomings of multi-step charge transfer. Gratifyingly, benefitting from the suitable energy bands and excellent electrocatalytic oxygen evolution activity of La0.9Fe1.1O3, the photoanode exhibits outstanding bulk charge separation and surface charge utilization efficiencies, as well as achieving a photocurrent density that is over three times higher than that of pristine ZnO NRs, with a small onset potential (0.33 V vs. RHE). This electrode modification concept provides guidance for the development of other highly active photoelectrodes.
Collapse
Affiliation(s)
- Xuefeng Long
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Tong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | - Xinhong Zhao
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
10
|
Quiñonero J, Pastor FJ, Orts JM, Gómez R. Photoelectrochemical Behavior and Computational Insights for Pristine and Doped NdFeO 3 Thin-Film Photocathodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14150-14159. [PMID: 33728897 PMCID: PMC8485327 DOI: 10.1021/acsami.0c21792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Among the different strategies that are being developed to solve the current energy challenge, harvesting energy directly from sunlight through a tandem photoelectrochemical cell (water splitting) is most attractive. Its implementation requires the development of stable and efficient photocathodes, NdFeO3 being a suitable candidate among ternary oxides. In this study, transparent NdFeO3 thin-film photocathodes have been successfully prepared by a citric acid-based sol-gel procedure, followed by thermal treatment in air at 640 °C. These electrodes show photocurrents for both the hydrogen evolution and oxygen reduction reactions. Doping with Mg2+ and Zn2+ has been observed to significantly enhance the photoelectrocatalytic performance of NdFeO3 toward oxygen reduction. Magnesium is slightly more efficient as a dopant than Zn, leading to a multiplication of the photocurrent by a factor of 4-5 for a doping level of 5 at % (with respect to iron atoms). This same trend is observed for hydrogen evolution. The beneficial effect of doping is primarily attributed to an increase in the density and a change in the nature of the majority charge carriers. DFT calculations help to rationalize the behavior of NdFeO3 by pointing to the importance of nanostructuring and doping. All in all, NdFeO3 has the potential to be used as a photocathode in photoelectrochemical applications, although efforts should be directed to limit surface recombination.
Collapse
Affiliation(s)
- Javier Quiñonero
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Francisco J. Pastor
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - José M. Orts
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Roberto Gómez
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| |
Collapse
|
11
|
Khan I, Luo M, Guo L, Khan S, Wang C, Khan A, Saeed M, Zaman S, Qi K, Liu QL. Enhanced visible-light photoactivities of porous LaFeO 3 by synchronously doping Ni 2+ and coupling TS-1 for CO 2 reduction and 2,4,6-trinitrophenol degradation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01112j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
TOC showing the enhanced visible-light photoactivities of porous LaFeO3 by synchronously doping with Ni2+ and coupling with TS-1 for CO2 reduction and 2,4,6-trinitrophenol degradation.
Collapse
Affiliation(s)
- Iltaf Khan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
- Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Mingsheng Luo
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
- Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, Beijing 102617, China
- Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China
| | - Lin Guo
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
| | - Shoaib Khan
- Department of Horticulture, Jiangxi Agricultural University, Nanchang, China
| | - Chunjuan Wang
- College of Agriculture, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Aftab Khan
- College of Agriculture, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Muhmmad Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Saeed Zaman
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Qing long Liu
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
| |
Collapse
|
12
|
Sun X, Tiwari D, Fermin DJ. Promoting Active Electronic States in LaFeO 3 Thin-Films Photocathodes via Alkaline-Earth Metal Substitution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31486-31495. [PMID: 32539332 DOI: 10.1021/acsami.0c08174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of alkaline-earth metal cation (AMC; Mg2+, Ca2+, Sr2+, and Ba2+) substitution on the photoelectrochemical properties of phase-pure LaFeO3 (LFO) thin-films are elucidated by X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), diffuse reflectance, and electrochemical impedance spectroscopy (EIS). XRD confirms the formation of single-phase cubic LFO thin films with a rather complex dependence on the nature of the AMC and extent of substitution. Interestingly, subtle trends in lattice constant variations observed in XRD are closely correlated with shifts in the binding energies of Fe 2p3/2 and O 1s orbitals associated with the perovskite lattice. We establish a scaling factor between these two photoemission peaks, unveiling key correlation between Fe oxidation state and Fe-O covalency. Diffuse reflectance shows that optical transitions are little affected by AMC substitution below 10%, which are dominated by a direct bandgap transition close to 2.72 eV. Differential capacitance data obtained from EIS confirm the p-type characteristic of pristine LFO thin-films, revealing the presence of sub-bandgap electronic state (A-states) close to the valence band edge. The density of A-states is decreased upon AMC substitution, while the overall capacitance increases (increase in dopant level) and the apparent flat-band potential shifts toward more positive potentials. This behavior is consistent with the change in the valence band photoemission edge. In addition, capacitance data of cation-substituted films show the emergence of deeper states centered around 0.6 eV above the valence band edge (B-states). Photoelectrochemical responses toward the hydrogen evolution and oxygen reduction reactions in alkaline solutions show a complex dependence on alkaline-earth metal incorporation, reaching incident-photon-to-current conversion efficiency close to 20% in oxygen saturated solutions. We rationalize the photoresponses of the LFO films in terms of the effect sub-bandgap states on majority carrier mobility, charge transfer, and recombination kinetics.
Collapse
Affiliation(s)
- Xin Sun
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| | - Devendra Tiwari
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| | - David J Fermin
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| |
Collapse
|
13
|
Wrede S, Tian H. Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion. Phys Chem Chem Phys 2020; 22:13850-13861. [PMID: 32567609 DOI: 10.1039/d0cp01363c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In order to meet the ever-growing global energy demand for affordable and clean energy, it is essential to provide this energy by renewable resources and consider the eco-efficiency of the production and abundance of the utilised materials. While this is seldom discussed in the case of technologies still in the research stage, addressing the issue of sustainability is key to push research in the right direction. Here we provide an overview of the current p-type metal oxide semiconductor materials in dye-sensitised photocathodes, considering element abundance, synthetic methods and large scale fabrication as well as the underlying physical properties that are necessary for efficient solar harvesting devices.
Collapse
Affiliation(s)
- Sina Wrede
- Department of Chemistry-Ångström Lab., Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | | |
Collapse
|
14
|
Effect of the Zr-Substitution on the Structural and Electrical Properties of LaFeO3: XRD, Raman Scattering, SEM, and Impedance Spectroscopy Study. CRYSTALS 2020. [DOI: 10.3390/cryst10050399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The LaFe1−xZrxO3 (x = 0.01, 0.05) ceramics were prepared by sol-gel and annealing method and studied by XRD, Raman scattering analysis, SEM, and impedance spectroscopy method. The crystal structure and phonon characteristics analysis revealed that the crystal structure tends to preserve its ideal orthorhombic structure, following the increase in driving force of the Fe/ZrO6 octahedral tilting. The frequency-dependent dielectric parameters at each temperature decreased with increasing Zr content. The temperature dependence dielectric relaxation and dc conduction mechanism satisfied the Arrhenius law and increased with increasing Zr content. The activation energy ranged from 0.30 to 0.50 eV and was similar in the relaxation and conduction mechanisms, indicating that both transport mechanisms were based on a similar mechanism.
Collapse
|
15
|
Son MK, Seo H, Watanabe M, Shiratani M, Ishihara T. Characteristics of crystalline sputtered LaFeO 3 thin films as photoelectrochemical water splitting photocathodes. NANOSCALE 2020; 12:9653-9660. [PMID: 32319489 DOI: 10.1039/d0nr01762k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stable photoelectrochemical (PEC) operation is a critical issue for the commercialization of PEC water-splitting systems. Unfortunately, most semiconductor photocathodes generating hydrogen in these systems are unstable in aqueous solutions. This is a huge limitation for the development of durable PEC water-splitting systems. Lanthanum iron oxide (LaFeO3) is a promising p-type semiconductor to overcome this drawback because of its stability in an aqueous solution and its proper energy level for reducing water. In this study, we fabricated a crystalline LaFeO3 thin film by radio frequency magnetron sputtering deposition and a post-annealing process in air for use as a PEC photocathode. Based on the morphological, compositional, optical and electronic characterizations, we found that it was ideal for a visible light-responsive PEC photocathode and tandem PEC water-splitting system with a small band gap absorber behind it. Furthermore, it showed stable PEC performance in a strong alkaline solution during PEC operation without any protection layers. Therefore, the crystalline sputtered LaFeO3 thin film suggested in this study would be feasible to apply as a PEC photocathode for durable, simple and low-cost PEC water splitting.
Collapse
Affiliation(s)
- Min-Kyu Son
- Molecular Photoconversion Devices Research Division, International Institute for Carbon-Neutral Energy Research(I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. and Center of Plasma Nano-interface Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hyunwoong Seo
- Department of Energy Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Republic of Korea
| | - Motonori Watanabe
- Molecular Photoconversion Devices Research Division, International Institute for Carbon-Neutral Energy Research(I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masaharu Shiratani
- Center of Plasma Nano-interface Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsumi Ishihara
- Molecular Photoconversion Devices Research Division, International Institute for Carbon-Neutral Energy Research(I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
16
|
Rahmatinejad S, Naeimi H. Crumpled perovskite-type LaMoxFe1-xO3 nanosheets: A reusable catalyst for rapid and green synthesis of naphthopyranopyrimidine derivatives. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Long X, Wang C, Wei S, Wang T, Jin J, Ma J. Layered Double Hydroxide onto Perovskite Oxide-Decorated ZnO Nanorods for Modulation of Carrier Transfer Behavior in Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2452-2459. [PMID: 31845790 DOI: 10.1021/acsami.9b17965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the fact that perovskite oxides with high photoelectrochemical (PEC) stability have gained widespread concern in the field of photo(electro)catalytic water splitting, the potential as a photoelectrode has not yet fully exploited. Herein, perovskite oxide-decorated ZnO nanorod photoanode improves the vital issue that photoproduced electron-hole pairs are apt to be quenched, in which type II band alignment between perovskite oxide and ZnO plays a crucial role in extracting carriers. Further, coupling with layered double hydroxide (LDH) onto the heterostructure not only tunes surface injection behavior of charge carriers by facilitating the interface reaction dynamics but also suppresses ZnO self-corrosion for extended durability. As a result, the optimized CoAl-LDH/LaFeO3/ZnO nanorod photoanode yields a much enhancive effect for the PEC property in terms of photocurrent density (2.46 mA cm-2 at 1.23 V vs reversible hydrogen electrode under AM 1.5G), onset potential, and stability. This work signifies a feasible design to combine promising perovskite oxides with the traditional photoelectrode system for achieving efficient water splitting.
Collapse
Affiliation(s)
- Xuefeng Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Chenglong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Shenqi Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Tong Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| |
Collapse
|
18
|
Monllor-Satoca D, Díez-García MI, Lana-Villarreal T, Gómez R. Photoelectrocatalytic production of solar fuels with semiconductor oxides: materials, activity and modeling. Chem Commun (Camb) 2020; 56:12272-12289. [DOI: 10.1039/d0cc04387g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal oxides keep on being excellent candidates as electrode materials for the photoelectrochemical conversion of solar energy into chemical energy.
Collapse
Affiliation(s)
- Damián Monllor-Satoca
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - María Isabel Díez-García
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - Teresa Lana-Villarreal
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - Roberto Gómez
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| |
Collapse
|
19
|
Lumley MA, Radmilovic A, Jang YJ, Lindberg AE, Choi KS. Perspectives on the Development of Oxide-Based Photocathodes for Solar Fuel Production. J Am Chem Soc 2019; 141:18358-18369. [PMID: 31693356 DOI: 10.1021/jacs.9b07976] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photoelectrochemical cells (PECs), which use semiconductor electrodes (photoelectrodes) to absorb solar energy and perform chemical reactions, constitute one of the most attractive strategies to produce chemical fuels using renewable energy sources. Oxide-based photoelectrodes specifically have been intensively investigated for the construction of PECs due to their relatively inexpensive processing costs and better stability in aqueous media compared with other types of photoelectrodes. Although there have been many advancements in the development of oxide-based photoanodes, our understanding of oxide-based photocathodes remains limited. The goal of this Perspective is to examine the recent progress made in the field of oxide-based photocathodes and discuss future research directions. The photocathode systems considered here include binary and ternary Cu-based photocathodes and ternary Fe-based photocathodes. We assessed the characteristics and major advantages and drawbacks of each system and identified the most critical research gaps. The insights and discussions provided in this Perspective will serve as useful resources for the design of future studies, leading to the development of more efficient and practical PECs.
Collapse
Affiliation(s)
- Margaret A Lumley
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Andjela Radmilovic
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Youn Jeong Jang
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ann E Lindberg
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Kyoung-Shin Choi
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
20
|
Yin XT, Dastan D, Wu FY, Li J. Facile Synthesis of SnO 2/LaFeO 3-XN X Composite: Photocatalytic Activity and Gas Sensing Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1163. [PMID: 31416194 PMCID: PMC6724142 DOI: 10.3390/nano9081163] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/01/2022]
Abstract
Here SnO2/LaFeO3-XNX composite was fabricated using a wet chemical method and was applied to pollutants degradation and gas sensing for the first time. The composite exhibits high performance for photocatalytic degradation of Rhodamine B (RhB) dye and selectivity sensing of various gases. On the basis of the completed experiments, the improved RhB degradation and selective gas sensing performance resulted from the extended optical absorption via N2 incorporated surface states and enhanced charge separation via coupling SnO2. Using the scavengers trapping experiments, the superoxide radical (O2•-) was investigated as the major scavenger involved in the degradation of RhB over SnO2/LaFeO3-XNX composite. In this paper, the probable reaction steps involved in the RhB dye degradation over SnO2/LaFeO3-XNX composite are proposed. This work will provide reasonable strategies to fabricate LaFeO3-based proficient and stable catalysts for environmental purification. In addition, the result of the selectivity of gas performance is also presented.
Collapse
Affiliation(s)
- Xi-Tao Yin
- The Key Laboratory of Chemical Metallurgy Engineering of Liaoning Province and School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Davoud Dastan
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Fa-Yu Wu
- The Key Laboratory of Chemical Metallurgy Engineering of Liaoning Province and School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Jing Li
- The Key Laboratory of Chemical Metallurgy Engineering of Liaoning Province and School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
21
|
Wang W, Xu M, Xu X, Zhou W, Shao Z. Perowskitoxid‐Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 V.R. China
| | - Meigui Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 V.R. China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE) Curtin University Perth WA 6845 Australien
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 V.R. China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 V.R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE) Curtin University Perth WA 6845 Australien
| |
Collapse
|
22
|
Wang W, Xu M, Xu X, Zhou W, Shao Z. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting. Angew Chem Int Ed Engl 2019; 59:136-152. [PMID: 30790407 DOI: 10.1002/anie.201900292] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Photoelectrochemical (PEC) water splitting is an attractive strategy for the large-scale production of renewable hydrogen from water. Developing cost-effective, active and stable semiconducting photoelectrodes is extremely important for achieving PEC water splitting with high solar-to-hydrogen efficiency. Perovskite oxides as a large family of semiconducting metal oxides are extensively investigated as electrodes in PEC water splitting owing to their abundance, high (photo)electrochemical stability, compositional and structural flexibility allowing the achievement of high electrocatalytic activity, superior sunlight absorption capability and precise control and tuning of band gaps and band edges. In this review, the research progress in the design, development, and application of perovskite oxides in PEC water splitting is summarized, with a special emphasis placed on understanding the relationship between the composition/structure and (photo)electrochemical activity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Meigui Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
23
|
Jang YJ, Lee JS. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes. CHEMSUSCHEM 2019; 12:1835-1845. [PMID: 30614648 DOI: 10.1002/cssc.201802596] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Photoelectrochemical (PEC) water splitting is a promising way to produce clean and sustainable hydrogen fuel. Solar hydrogen production by using p-type metal oxide semiconductor photocathodes has not been studied as extensively as that with n-type metal oxide semiconductor photoanodes and p-type photovoltaic-grade non-oxide semiconductor photocathodes. Copper-based oxide photocathodes show relatively good conductivity, but suffer from instability in aqueous solution under illumination, whereas iron-based metal oxide photocathodes demonstrate more stable PEC performance but have problems in charge separation and transport. Herein, an overview of recent progress in p-type metal oxide-based photocathodes for PEC water reduction is provided. Although these materials have not been fully developed to reach their potential performance, the challenges involved have been identified and strategies to overcome these limitations have been proposed. Future research in this field should address these issues and challenges in addition to the discovery of new materials.
Collapse
Affiliation(s)
- Youn Jeong Jang
- Department of Energy Engineering, School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jae Sung Lee
- Department of Energy Engineering, School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
24
|
Chen Z, Fan T, Zhang Q, He J, Fan H, Sun Y, Yi X, Li J. Interface engineering: Surface hydrophilic regulation of LaFeO3 towards enhanced visible light photocatalytic hydrogen evolution. J Colloid Interface Sci 2019; 536:105-111. [DOI: 10.1016/j.jcis.2018.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022]
|
25
|
Wang P, He Y, Mi Y, Zhu J, Zhang F, Liu Y, Yang Y, Chen M, Cao D. Enhanced photoelectrochemical performance of LaFeO3 photocathode with Au buffer layer. RSC Adv 2019; 9:26780-26786. [PMID: 35528603 PMCID: PMC9070651 DOI: 10.1039/c9ra05521e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022] Open
Abstract
Due to an appropriate band gap of 2.07 eV, perovskite LaFeO3 (LFO) is an alternative candidate for high-efficiency photoelectrochemical (PEC) systems. However, the photocurrent of the LFO photocathode is too low to be practical. Herein, we prepared a LFO film with high crystal quality by inserting an Au thin layer between LFO and FTO in the LFO/FTO photocathode. Accordingly, an effective improvement PEC performance could be obtained and the photocurrent density of the FTO/Au/LFO electrode was increased to −19.60 μA cm−2 at 0.6 V vs. RHE, which is 4.1 times higher than that of pristine FTO/LFO electrode. Based on the experimental and theoretical analysis, the enhancement of the photocurrent was attributed to the strong light harvesting, enhanced charge separation, and increased charge-collection efficiency of the Au/LFO structure. This work provides a promising strategy to develop high-efficiency PEC electrodes, and has potential to be applied in the visible-light water splitting area. Au/LFO obtained by facile magnetron sputtering and sol–gel process presents a remarkable improvement in photocurrent up to −19.60 μA cm−2.![]()
Collapse
Affiliation(s)
- Peipei Wang
- Department of Physics, Faculty of Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yanfang He
- Department of Physics, Faculty of Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yan Mi
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products
- Guangxi University for Nationalities
- Nanning 530006
- P. R. China
| | - Jianfei Zhu
- Department of Physics, Faculty of Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Faling Zhang
- Department of Physics, Faculty of Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yuan Liu
- Department of Physics, Faculty of Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Ying Yang
- Department of Physics, Faculty of Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Mingming Chen
- Department of Physics, Faculty of Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Dawei Cao
- Department of Physics, Faculty of Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
26
|
Li F, Xu R, Nie C, Wu X, Zhang P, Duan L, Sun L. Dye-sensitized LaFeO3 photocathode for solar-driven H2 generation. Chem Commun (Camb) 2019; 55:12940-12943. [DOI: 10.1039/c9cc06781g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mesoporous visible-light-absorbing LaFeO3 semiconductor adsorbed an organic dye and a molecular catalyst on its surface for solar-driven H2 generation.
Collapse
Affiliation(s)
- Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Institute for Energy Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Rui Xu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Institute for Energy Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Chengming Nie
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Institute for Energy Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Institute for Energy Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Institute for Energy Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Institute for Energy Science and Technology
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
27
|
Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, solar water splitting has evolved into one of the most promising techniques for harvesting hydrogen using solar energy. Despite the high potential of this process for hydrogen production, many research groups have encountered significant challenges in the quest to achieve a high solar-to-hydrogen conversion efficiency. Recently, ferroelectric materials have attracted much attention as promising candidate materials for water splitting. These materials are among the best candidates for achieving water oxidation using solar energy. Moreover, their characteristics are changeable by atom substitute doping or the fabrication of a new complex structure. In this review, we describe solar water splitting technology via the solar-to-hydrogen conversion process. We will examine the challenges associated with this technology whereby ferroelectric materials are exploited to achieve a high solar-to-hydrogen conversion efficiency.
Collapse
|
28
|
Cots A, Bonete P, Gómez R. Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26348-26356. [PMID: 30016591 DOI: 10.1021/acsami.8b09892] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cupric oxide (CuO) is considered as a promising photocathode material for photo(electro)chemical water splitting because of its suitable band gap, low cost related to copper earth abundancy, and straightforward fabrication. The main challenge for the development of practical CuO-based photocathodes for solar hydrogen evolution is to enhance its stability against photocorrosion. In this work, stable and efficient CuO photocathodes have been developed by using a simple and cost-effective methodology. CuO films, composed of nanowires and prepared by chemical oxidation of electrodeposited Cu, develop relatively high photocurrents in 1 M NaOH. However, this photocurrent appears to be partly associated with photocorrosion of CuO. It is significant though that, even unprotected, a faradaic efficiency for hydrogen evolution of ∼45% is attained. The incorporation of iron through an impregnation method, followed by a high-temperature thermal treatment for promoting the external phase transition of the nanowires from CuO to ternary copper iron oxide, was found to provide an improved stability at the expense of photocurrent, which decreases to about one-third of its initial value. In contrast, a faradaic efficiency for hydrogen evolution of ∼100% is achieved even in the absence of co-catalysts, which is ascribable to the favorable band positions of CuO and the iron copper ternary oxide in the core-shell structure of the nanowires.
Collapse
Affiliation(s)
- Ainhoa Cots
- Departament de Química Física i Institut Universitari d'Electroquímica , Universitat d'Alacant , Apartat 99 , E-03080 Alacant , Spain
| | - Pedro Bonete
- Departament de Química Física i Institut Universitari d'Electroquímica , Universitat d'Alacant , Apartat 99 , E-03080 Alacant , Spain
| | - Roberto Gómez
- Departament de Química Física i Institut Universitari d'Electroquímica , Universitat d'Alacant , Apartat 99 , E-03080 Alacant , Spain
| |
Collapse
|
29
|
|