1
|
Freitas Paiva M, Sadula S, Vlachos DG, Wojcieszak R, Vanhove G, Bellot Noronha F. Advancing Lignocellulosic Biomass Fractionation through Molten Salt Hydrates: Catalyst-Enhanced Pretreatment for Sustainable Biorefineries. CHEMSUSCHEM 2024; 17:e202400396. [PMID: 38872421 DOI: 10.1002/cssc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Developing a process that performs the lignocellulosic biomass fractionation under milder conditions simultaneously with the depolymerization and/or the upgrading of all fractions is fundamental for the economic viability of future lignin-first biorefineries. The molten salt hydrates (MSH) with homogeneous or heterogeneous catalysts are a potential alternative to biomass pretreatment that promotes cellulose's dissolution and its conversion to different platform molecules while keeping the lignin reactivity. This review investigates the fractionation of lignocellulosic biomass using MSH to produce chemicals and fuels. First, the MSH properties and applications are discussed. In particular, the use of MSH in cellulose dissolution and hydrolysis for producing high-value chemicals and fuels is presented. Then, the biomass treatment with MSH is discussed. Different strategies for preventing sugar degradation, such as biphasic media, adsorbents, and precipitation, are contrasted. The potential for valorizing isolated lignin from the pretreatment with MSH is debated. Finally, challenges and limitations in utilizing MSH for biomass valorization are discussed, and future developments are presented.
Collapse
Affiliation(s)
- Mateus Freitas Paiva
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- UMR 8522 - PC2 A - Physicochimie des Processus de Combustion et de l'Atmosphère, Univ. Lille, CNRS, F-59000, Lille, France
| | - Sunitha Sadula
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 150/221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 150/221 Academy Street, Newark, Delaware 19716, United States
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- L2CM UMR 7053, Université de Lorraine and CNRS, F-5400, Nancy, France
| | - Guillaume Vanhove
- UMR 8522 - PC2 A - Physicochimie des Processus de Combustion et de l'Atmosphère, Univ. Lille, CNRS, F-59000, Lille, France
| | - Fábio Bellot Noronha
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR, 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- National Institute of Technology, Catalysis, Biocatalysis and Chemical Processes Division, Rio de Janeiro, RJ 20081-312, Brazil
| |
Collapse
|
2
|
Aziz T, Li W, Zhu J, Chen B. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. Int J Biol Macromol 2024; 278:134695. [PMID: 39151861 DOI: 10.1016/j.ijbiomac.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The growing bioeconomic demand for lightweight, eco-friendly materials with functional versatility and competitive mechanical properties drives the resurgence of cellulose as a sustainable scaffold for various applications. This review comprehensively scrutinizes current progressions in cellulose functional materials (CFMs), concentrating on their structure-property connections. Significant modification methods, including cross-linking, grafting, and oxidation, are discussed together with preparation techniques categorized by cellulose sources. This review article highlights the extensive usage of modified cellulose in various industries, particularly its potential in optical and toughening applications, membrane production, and intelligent bio-based systems. Prominence is located on low-cost procedures for developing biodegradable polymers and the physical-chemical characteristics essential for biomedical applications. Furthermore, the review explores the role of cellulose derivatives in smart packaging films for food quality monitoring and deep probes into cellulose's mechanical, thermal, and structural characteristics. The multifunctional features of cellulose derivatives highlight their worth in evolving environmental and biomedical engineering applications.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Wenlong Li
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Jianguo Zhu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China.
| | - Beibei Chen
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Li Y, Sun LL, Cao DM, Cao XF, Sun SN. One-step conversion of corn stalk to glucose and furfural in molten salt hydrate/organic solvent biphasic system. BIORESOURCE TECHNOLOGY 2023; 386:129520. [PMID: 37468006 DOI: 10.1016/j.biortech.2023.129520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
An effective approach for glucose and furfural production by converting cellulose and hemicelluloses from corn stalk in a biphasic system of molten salt hydrate (MSH) and organic solvent using H2SO4 as catalyst was reported. Results showed that the system with LiBr·3H2O and dichloromethane (DCM) had excellent performance in cellulose and hemicelluloses conversion. Under the optimal reaction conditions (corn stalk:LiBr·3H2O:DCM ratio = 0.35:10:20 g/mL/mL, 0.05 mol/L H2SO4, 120 °C, 90 min), 58.9% glucose and 72.5% furfural were yielded. Meanwhile, lignin was obviously depolymerized by the cleavage of β-O-4' linkages and fractionated with high purity and low molecular weight for potential coproducts. Fluorescence microscopy and confocal Raman microscope displayed that the LiBr·3H2O/DCM treatment caused decreasing intensities in carbohydrate and lignin, suggesting the degradation of the main components of biomass. This research provided a promising biorefinery technology for the comprehensive utilization of corn stalk.
Collapse
Affiliation(s)
- Yu Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - De-Ming Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Igbokwe VC, Ezugworie FN, Onwosi CO, Aliyu GO, Obi CJ. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114333. [PMID: 34952394 DOI: 10.1016/j.jenvman.2021.114333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The transition from a fossil-based linear economy to a circular bioeconomy is no longer an option but rather imperative, given worldwide concerns about the depletion of fossil resources and the demand for innovative products that are ecocompatible. As a critical component of sustainable development, this discourse has attracted wide attention at the regional and international levels. Biorefinery is an indispensable technology to implement the blueprint of the circular bioeconomy. As a low-cost, non-waste innovative concept, the biorefinery concept will spur a myriad of new economic opportunities across a wide range of sectors. Consequently, scaling up biorefinery processes is of the essence. Despite several decades of research and development channeled into upscaling biorefinery processes, the commercialization of biorefinery technology appears unrealizable. In this review, challenges limiting the commercialization of biorefinery technologies are discussed, with a particular focus on biofuels, biochemicals, and biomaterials. To counteract these challenges, various process intensification strategies such as consolidated bioprocessing, integrated biorefinery configurations, the use of highly efficient bioreactors, simultaneous saccharification and fermentation, have been explored. This study also includes an overview of biomass pretreatment-generated inhibitory compounds as platform chemicals to produce other essential biocommodities. There is a detailed examination of the technological, economic, and environmental considerations of a sustainable biorefinery. Finally, the prospects for establishing a viable circular bioeconomy in Nigeria are briefly discussed.
Collapse
Affiliation(s)
- Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Materials Science and Engineering, Université de Pau et des Pays de l'Adour, 64012, Pau Cedex, France
| | - Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Godwin O Aliyu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinonye J Obi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
5
|
Talan A, Tiwari B, Yadav B, Tyagi RD, Wong JWC, Drogui P. Food waste valorization: Energy production using novel integrated systems. BIORESOURCE TECHNOLOGY 2021; 322:124538. [PMID: 33352392 DOI: 10.1016/j.biortech.2020.124538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Management of food waste (FW) is a global challenge due to increasing population and economic activities. Presently, landfill and incineration are the keyways of FW management, while economical and environmental sustainability have been an issue. Therefore, the biological processes have been investigated for resource and energy recovery from FW. However, these biological approaches have certain drawbacks and cannot be a complete solution for FW management. Therefore, this review aims to offer a detailed and complete analysis of current available technologies to achieve environmental and economical sustainability. In this context, zero solid waste discharge for resource and energy recovery has been put into view. Corresponding to which several innovative technologies using integrated biological methods for resource and energy recovery from FW have been elucidated.
Collapse
Affiliation(s)
- Anita Talan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhagyashree Tiwari
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, China.
| | - J W C Wong
- Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Hong Kong, China
| | - P Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
6
|
New Intensification Strategies for the Direct Conversion of Real Biomass into Platform and Fine Chemicals: What Are the Main Improvable Key Aspects? Catalysts 2020. [DOI: 10.3390/catal10090961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nowadays, the solvothermal conversion of biomass has reached a good level of development, and now it is necessary to improve the process intensification, in order to boost its further growth on the industrial scale. Otherwise, most of these processes would be limited to the pilot scale or, even worse, to exclusive academic investigations, intended as isolated applications for the development of new catalysts. For this purpose, it is necessary to improve the work-up technologies, combining, where possible, reaction/purification unit operations, and enhancing the feedstock/liquid ratio, thus improving the final concentration of the target product and reducing the work-up costs. Furthermore, it becomes decisive to reconsider more critically the choice of biomass, solvent(s), and catalysts, pursuing the biomass fractionation in its components and promoting one-pot cascade conversion routes. Screening and process optimization activities on a laboratory scale must be fast and functional to the flexibility of these processes, exploiting efficient reaction systems such as microwaves and/or ultrasounds, and using multivariate analysis for an integrated evaluation of the data. These upstream choices, which are mainly of the chemist’s responsibility, are fundamental and deeply interconnected with downstream engineering, economic, and legislative aspects, which are decisive for the real development of the process. In this Editorial, all these key issues will be discussed, in particular those aimed at the intensification of solvothermal processes, taking into account some real case studies, already developed on the industrial scale.
Collapse
|
7
|
Ghosh A, Haverly MR, Lindstrom JK, Johnston PA, Brown RC. Tetrahydrofuran-based two-step solvent liquefaction process for production of lignocellulosic sugars. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
THF-based solvent liquefaction demonstrates a new economic and sustainable approach for fractionating, saccharifying biomass with simple and efficient solvent recovery.
Collapse
Affiliation(s)
- Arpa Ghosh
- Bioeconomy Institute
- Iowa State University
- Ames
- USA
| | | | | | | | - Robert C. Brown
- Bioeconomy Institute
- Iowa State University
- Ames
- USA
- Department of Mechanical Engineering
| |
Collapse
|
8
|
Faba L, Garcés D, Díaz E, Ordóñez S. Carbon Materials as Phase-Transfer Promoters for Obtaining 5-Hydroxymethylfurfural from Cellulose in a Biphasic System. CHEMSUSCHEM 2019; 12:3769-3777. [PMID: 31240829 DOI: 10.1002/cssc.201901264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Different carbonaceous materials were tested as mass-transfer promoters for increasing the yield of 5-hydroxymethylfurfural (5-HMF) in biphasic cellulose hydrolysis. The benefits of working with a biphasic system (water/methyl isobutyl ketone) under soft acid conditions were taken as starting point (no humins or levulinic acid production), with slow extraction kinetics as the weakest point of this approach. Carbon nanotubes (CNTs) and activated carbon (AC) were proposed to improve 5-HMF liquid-liquid mass transfer. A kinetic analysis of the extraction process indicated the competition between 5-HMF and glucose adsorption as the main cause of the poor results obtained with AC. In contrast, very promising results were obtained with CNTs, mainly at 1.5 wt % loading, with complete transfer of HMF and a high global mass-transfer coefficient. The use of CNTs improved the amount of 5-HMF in the organic phase by more than 270 %.
Collapse
Affiliation(s)
- Laura Faba
- CRC Research Group, Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Diego Garcés
- CRC Research Group, Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Eva Díaz
- CRC Research Group, Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Salvador Ordóñez
- CRC Research Group, Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, 33006, Oviedo, Spain
| |
Collapse
|
9
|
Athaley A, Annam P, Saha B, Ierapetritou M. Techno-economic and life cycle analysis of different types of hydrolysis process for the production of p-Xylene. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2018.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Liu S, Josephson TR, Athaley A, Chen QP, Norton A, Ierapetritou M, Siepmann JI, Saha B, Vlachos DG. Renewable lubricants with tailored molecular architecture. SCIENCE ADVANCES 2019; 5:eaav5487. [PMID: 30746491 PMCID: PMC6358318 DOI: 10.1126/sciadv.aav5487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
We present a strategy to synthesize three types of renewable lubricant base oils with up to 90% yield using 2-alkylfurans, derived from nonfood biomass, and aldehydes, produced from natural oils or biomass through three chemistries: hydroxyalkylation/alkylation (HAA), HAA followed by hydrogenation, and HAA followed by hydrodeoxygenation. These molecules consist of (i) furan rings, (ii) saturated furan rings, and (iii) deoxygenated branched alkanes. The structures of these molecules can be tailored in terms of carbon number, branching length, distance between branches, and functional groups. The site-specific, energy-efficient C-C coupling chemistry in oxygenated biomass compounds, unmatched in current refineries, provides tailored structure and tunable properties. Molecular simulation demonstrates the ability to predict properties in agreement with experiments, proving the potential for molecular design.
Collapse
Affiliation(s)
- Sibao Liu
- Catalysis Center for Energy Innovation, Newark, DE 19716, USA
| | - Tyler R. Josephson
- Catalysis Center for Energy Innovation, Newark, DE 19716, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Abhay Athaley
- Catalysis Center for Energy Innovation, Newark, DE 19716, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Qile P. Chen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Norton
- Catalysis Center for Energy Innovation, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Marianthi Ierapetritou
- Catalysis Center for Energy Innovation, Newark, DE 19716, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - J. Ilja Siepmann
- Catalysis Center for Energy Innovation, Newark, DE 19716, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Basudeb Saha
- Catalysis Center for Energy Innovation, Newark, DE 19716, USA
| | - Dionisios G. Vlachos
- Catalysis Center for Energy Innovation, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
11
|
Ebikade E, Lym J, Wittreich G, Saha B, Vlachos DG. Kinetic Studies of Acid Hydrolysis of Food Waste-Derived Saccharides. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elvis Ebikade
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Jonathan Lym
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Gerhard Wittreich
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Basudeb Saha
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G. Vlachos
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|