1
|
Yu M, Weidenthaler C, Wang Y, Budiyanto E, Onur Sahin E, Chen M, DeBeer S, Rüdiger O, Tüysüz H. Surface Boron Modulation on Cobalt Oxide Nanocrystals for Electrochemical Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202211543. [PMID: 36001016 PMCID: PMC9826365 DOI: 10.1002/anie.202211543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Herein, we show that coupling boron with cobalt oxide tunes its structure and significantly boost its electrocatalytic performance for the oxygen evolution reaction (OER). Through a simple precipitation and thermal treatment process, a series of Co-B oxides with tunable morphologies and textural parameters were prepared. Detailed structural analysis supported first the formation of an disordered and partially amorphous material with nanosized Co3 BO5 and/or Co2 B2 O6 being present on the local atomic scale. The boron modulation resulted in a superior OER reactivity by delivering a large current and an overpotential of 338 mV to reach a current density of 10 mA cm-2 in 1 M KOH electrolyte. Identical location transmission electron microscopy and in situ electrochemical Raman spectroscopy studies revealed alteration and surface re-construction of materials, and formation of CoO2 and (oxy)hydroxide intermediate, which were found to be highly dependent on crystallinity of the samples.
Collapse
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Claudia Weidenthaler
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Yue Wang
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Eko Budiyanto
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Ezgi Onur Sahin
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Minmin Chen
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| |
Collapse
|
2
|
Yu M, Weidenthaler C, Wang Y, Budiyanto E, Sahin EO, Chen M, DeBeer S, Rüdiger O, Tüysüz H. Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Powder Diffraction and Surface Spectroscopy GERMANY
| | - Yue Wang
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Ezgi Onur Sahin
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Powder Diffraction and Surface Spectroscopy GERMANY
| | - Minmin Chen
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Serena DeBeer
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Olaf Rüdiger
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
3
|
Budiyanto E, Salamon S, Wang Y, Wende H, Tüysüz H. Phase Segregation in Cobalt Iron Oxide Nanowires toward Enhanced Oxygen Evolution Reaction Activity. JACS AU 2022; 2:697-710. [PMID: 35373196 PMCID: PMC8970005 DOI: 10.1021/jacsau.1c00561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The impact of reduction post-treatment and phase segregation of cobalt iron oxide nanowires on their electrochemical oxygen evolution reaction (OER) activity is investigated. A series of cobalt iron oxide spinel nanowires are prepared via the nanocasting route using ordered mesoporous silica as a hard template. The replicated oxides are selectively reduced through a mild reduction that results in phase transformation as well as the formation of grain boundaries. The detailed structural analyses, including the 57Fe isotope-enriched Mössbauer study, validated the formation of iron oxide clusters supported by ordered mesoporous CoO nanowires after the reduction process. This affects the OER activity significantly, whereby the overpotential at 10 mA/cm2 decreases from 378 to 339 mV and the current density at 1.7 V vs RHE increases by twofold from 150 to 315 mA/cm2. In situ Raman microscopy revealed that the surfaces of reduced CoO were oxidized to cobalt with a higher oxidation state upon solvation in the KOH electrolyte. The implementation of external potential bias led to the formation of an oxyhydroxide intermediate and a disordered-spinel phase. The interactions of iron clusters with cobalt oxide at the phase boundaries were found to be beneficial to enhance the charge transfer of the cobalt oxide and boost the overall OER activity by reaching a Faradaic efficiency of up to 96%. All in all, the post-reduction and phase segregation of cobalt iron oxide play an important role as a precatalyst for the OER.
Collapse
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Soma Salamon
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Yue Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Heiko Wende
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Zerebecki S, Salamon S, Landers J, Yang Y, Tong Y, Budiyanto E, Waffel D, Dreyer M, Saddeler S, Kox T, Kenmoe S, Spohr E, Schulz S, Behrens M, Muhler M, Tüysüz H, Campen RK, Wende H, Reichenberger S, Barcikowski S. Engineering of Cation Occupancy of CoFe2O4 Oxidation Catalysts by Nanosecond, Single‐Pulse Laser Excitation in Water. ChemCatChem 2022. [DOI: 10.1002/cctc.202101785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Swen Zerebecki
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Technical Chemistry I GERMANY
| | - Soma Salamon
- Universität Duisburg-Essen: Universitat Duisburg-Essen Faculty of Physics GERMANY
| | - Joachim Landers
- Universität Duisburg-Essen: Universitat Duisburg-Essen Faculty of Physics GERMANY
| | - Yuke Yang
- Universität Duisburg-Essen: Universitat Duisburg-Essen Faculty of Physics GERMANY
| | - Yujin Tong
- Universität Duisburg-Essen: Universitat Duisburg-Essen Faculty of Physics GERMANY
| | - Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogenous Catalysis and Sustainable Energy GERMANY
| | - Daniel Waffel
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Laboratory of Industrial Chemistry GERMANY
| | - Maik Dreyer
- Universität Duisburg-Essen: Universitat Duisburg-Essen Inorganic Chemistry GERMANY
| | - Sascha Saddeler
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Inorganic Chemistry GERMANY
| | - Tim Kox
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Theoretical Chemistry GERMANY
| | - Stephane Kenmoe
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Theoretical Chemistry GERMANY
| | - Eckhard Spohr
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Theoretical Chemistry GERMANY
| | - Stephan Schulz
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Inorganic Chemistry GERMANY
| | - Malte Behrens
- Christian-Albrechts-Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Inorganic Chemistry GERMANY
| | - Martin Muhler
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Industrial Chemistry GERMANY
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogenous Catalysis and Sustainabile Energy GERMANY
| | - Richard Kramer Campen
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Faculty of Physics GERMANY
| | - Heiko Wende
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Faculty of Physics GERMANY
| | - Sven Reichenberger
- Universitat Duisburg-Essen Technical Chemistry 1 Universitätsstraße 7 45141 Essen GERMANY
| | - Stephan Barcikowski
- University of Duisburg Essen - Campus Duisburg: Universitat Duisburg-Essen Technical Chemistry I GERMANY
| |
Collapse
|
5
|
Yu M, Budiyanto E, Tüysüz H. Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mingquan Yu
- Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Eko Budiyanto
- Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Harun Tüysüz
- Department of Heterogeneous Catalysis Max-Planck-Institute für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
6
|
Yu M, Budiyanto E, Tüysüz H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202103824. [PMID: 34138511 PMCID: PMC9291824 DOI: 10.1002/anie.202103824] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/15/2022]
Abstract
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.
Collapse
Affiliation(s)
- Mingquan Yu
- Department of Heterogeneous CatalysisMax-Planck-Institute für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Eko Budiyanto
- Department of Heterogeneous CatalysisMax-Planck-Institute für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Department of Heterogeneous CatalysisMax-Planck-Institute für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
7
|
Budiyanto E, Zerebecki S, Weidenthaler C, Kox T, Kenmoe S, Spohr E, DeBeer S, Rüdiger O, Reichenberger S, Barcikowski S, Tüysüz H. Impact of Single-Pulse, Low-Intensity Laser Post-Processing on Structure and Activity of Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51962-51973. [PMID: 34323466 PMCID: PMC8587604 DOI: 10.1021/acsami.1c08034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report nanosecond, single-pulse laser post-processing (PLPP) in a liquid flat jet with precise control of the applied laser intensity to tune structure, defect sites, and the oxygen evolution reaction (OER) activity of mesostructured Co3O4. High-resolution X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) are consistent with the formation of cobalt vacancies at tetrahedral sites and an increase in the lattice parameter of Co3O4 after the laser treatment. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) further reveal increased disorder in the structure and a slight decrease in the average oxidation state of the cobalt oxide. Molecular dynamics simulation confirms the surface restructuring upon laser post-treatment on Co3O4. Importantly, the defect-induced PLPP was shown to lower the charge transfer resistance and boost the oxygen evolution activity of Co3O4. For the optimized sample, a 2-fold increment of current density at 1.7 V vs RHE is obtained and the overpotential at 10 mA/cm2 decreases remarkably from 405 to 357 mV compared to pristine Co3O4. Post-mortem characterization reveals that the material retains its activity, morphology, and phase structure after a prolonged stability test.
Collapse
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Swen Zerebecki
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Tim Kox
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Stephane Kenmoe
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Eckhard Spohr
- Department
of Theoretical Chemistry, University of
Duisburg-Essen, Universitätsstraße 2, Essen, North Rhine-Westphalia 45141, Germany
| | - Serena DeBeer
- Max Planck
Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Olaf Rüdiger
- Max Planck
Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Sven Reichenberger
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Stephan Barcikowski
- Technical
Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, North Rhine-Westphalia 45141, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
8
|
Bähr A, Petersen H, Tüysüz H. Large‐Scale Production of Carbon‐Supported Cobalt‐Based Functional Nanoparticles for Oxygen Evolution Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Bähr
- Department for Heterogeneous Catalysis and Sustainable Energy Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Hilke Petersen
- Department for Powder Diffraction and Surface Spectroscopy Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Harun Tüysüz
- Department for Heterogeneous Catalysis and Sustainable Energy Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
9
|
Klemenz S, Stegmüller A, Yoon S, Felser C, Tüysüz H, Weidenkaff A. Holistic View on Materials Development: Water Electrolysis as a Case Study. Angew Chem Int Ed Engl 2021; 60:20094-20100. [PMID: 34235841 PMCID: PMC8457090 DOI: 10.1002/anie.202105324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 11/20/2022]
Abstract
In view of rising ecological awareness, materials development is primarily aimed at improving the performance and efficiency of innovative and more elaborate materials. However, a materials performance figure of merit should include essential aspects of materials: environmental impact, economic constraints, technical feasibility, etc. Thus, we promote the inclusion of sustainability criteria already during the materials design process. With such a holistic design approach, new products may be more likely to meet the circular economy requirements than when traditional development strategies are pursued. Using catalysts for water electrolysis as an example, we present a modelling method based on experimental data to holistically evaluate processes.
Collapse
Affiliation(s)
- Sebastian Klemenz
- Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKSAschaffenburger Str. 12164357HanauGermany
- Solid State ChemistryMax-Planck-Institut für Chemische Physik fester StoffeNöthnitzerstr. 4001187DresdenGermany
| | - Andreas Stegmüller
- Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKSAschaffenburger Str. 12164357HanauGermany
| | - Songhak Yoon
- Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKSAschaffenburger Str. 12164357HanauGermany
| | - Claudia Felser
- Solid State ChemistryMax-Planck-Institut für Chemische Physik fester StoffeNöthnitzerstr. 4001187DresdenGermany
| | - Harun Tüysüz
- Department of Heterogenous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Anke Weidenkaff
- Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKSAschaffenburger Str. 12164357HanauGermany
- Materials and ResourcesTechnische Universität DarmstadtAlarich-Weiss-Straße 264287DarmstadtGermany
| |
Collapse
|
10
|
Klemenz S, Stegmüller A, Yoon S, Felser C, Tüysüz H, Weidenkaff A. Ganzheitliche Betrachtung in der Materialentwicklung: Wasser‐Elektrolyse als Fallbeispiel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sebastian Klemenz
- Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS Aschaffenburger Straße 121 64357 Hanau Deutschland
- Festkörperchemie Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzerstraße 40 01187 Dresden Deutschland
| | - Andreas Stegmüller
- Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS Aschaffenburger Straße 121 64357 Hanau Deutschland
| | - Songhak Yoon
- Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS Aschaffenburger Straße 121 64357 Hanau Deutschland
| | - Claudia Felser
- Festkörperchemie Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzerstraße 40 01187 Dresden Deutschland
| | - Harun Tüysüz
- Heterogene Katalyse und Nachhaltige Energie Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Anke Weidenkaff
- Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS Aschaffenburger Straße 121 64357 Hanau Deutschland
- Werkstofftechnik und Ressourcenmanagement Technische Universität Darmstadt Alarich-Weiss-Straße 2 64287 Darmstadt Deutschland
| |
Collapse
|
11
|
Boosting Oxygen Reduction Catalysis Through Electronic Reconfiguration of Fe–N–C Induced by P Doping. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00682-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Zhao J, Cui Y, Zhang J, Wu J, Yue Y, Qian G. Fabrication of a Sustainable Closed Loop for Waste-Derived Materials in Electrochemical Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiachun Zhao
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, P. R. China
| | - Yaowen Cui
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, P. R. China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, P. R. China
| | - Jianzhong Wu
- MGI of Shanghai University, Xiapu Town, Xiangdong
District, Pingxiang City, Jiangxi 337022, P. R. China
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong
District, Pingxiang City, Jiangxi 337022, P. R. China
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong
District, Pingxiang City, Jiangxi 337022, P. R. China
| |
Collapse
|
13
|
Yu M, Li G, Fu C, Liu E, Manna K, Budiyanto E, Yang Q, Felser C, Tüysüz H. Tunable e g Orbital Occupancy in Heusler Compounds for Oxygen Evolution Reaction*. Angew Chem Int Ed Engl 2021; 60:5800-5805. [PMID: 33300643 PMCID: PMC7986729 DOI: 10.1002/anie.202013610] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Heusler compounds have potential in electrocatalysis because of their mechanical robustness, metallic conductivity, and wide tunability in the electronic structure and element compositions. This study reports the first application of Co2 YZ-type Heusler compounds as electrocatalysts for the oxygen evolution reaction (OER). A range of Co2 YZ crystals was synthesized through the arc-melting method and the eg orbital filling of Co was precisely regulated by varying Y and Z sites of the compound. A correlation between the eg orbital filling of reactive Co sites and OER activity was found for Co2 MnZ compounds (Z=Ti, Al, V, and Ga), whereby higher catalytic current was achieved for eg orbital filling approaching unity. A similar trend of eg orbital filling on the reactivity of cobalt sites was also observed for other Heusler compounds (Co2 VZ, Z=Sn and Ga). This work demonstrates proof of concept in the application of Heusler compounds as a new class of OER electrocatalysts, and the influence of the manipulation of the spin orbitals on their catalytic performance.
Collapse
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Guowei Li
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Straβe 4001187DresdenGermany
| | - Chenguang Fu
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Straβe 4001187DresdenGermany
| | - Enke Liu
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Straβe 4001187DresdenGermany
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Kaustuv Manna
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Straβe 4001187DresdenGermany
- Department of PhysicsIndian Institute of TechnologyDelhiNew Delhi110016India
| | - Eko Budiyanto
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Qun Yang
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Straβe 4001187DresdenGermany
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Straβe 4001187DresdenGermany
| | - Harun Tüysüz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
14
|
Yu M, Li G, Fu C, Liu E, Manna K, Budiyanto E, Yang Q, Felser C, Tüysüz H. Tunable
e
g
Orbital Occupancy in Heusler Compounds for Oxygen Evolution Reaction**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Guowei Li
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Straβe 40 01187 Dresden Germany
| | - Chenguang Fu
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Straβe 40 01187 Dresden Germany
| | - Enke Liu
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Straβe 40 01187 Dresden Germany
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Kaustuv Manna
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Straβe 40 01187 Dresden Germany
- Department of Physics Indian Institute of Technology Delhi New Delhi 110016 India
| | - Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Qun Yang
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Straβe 40 01187 Dresden Germany
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Straβe 40 01187 Dresden Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
15
|
Yang X, Li Y, Ma J, Zou Y, Zhou X, Cheng X, Alharthi FA, Alghamdi AA, Deng Y. General and Efficient Synthesis of Two-Dimensional Monolayer Mesoporous Materials with Diverse Framework Compositions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1222-1233. [PMID: 33356112 DOI: 10.1021/acsami.0c18027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) mesoporous materials have received substantial research interest due to their highly exposed active sites and unusual nanoconfinement effect. However, controllable and efficient synthesis of 2D mesoporous materials and investigation of their intrinsic properties have remained quite rare. Herein, a general and effective surface-limited cooperative assembly (SLCA) method enabled by leveling precursor solutions on KCl crystals via centrifugation is employed to conveniently synthesize two-dimensional (2D) monolayer mesoporous materials with different compositions. This novel strategy is performed in a manner similar to spin coating, not only enabling generation of ultrathin mesostructured composite film on KCl particles and recycling excessive precursor solution but also providing favorable solvent annealing environment for the film to form ordered mesostructures. Taking monolayer mesoporous Ce0.8Zr0.2O2 solid solutions as a sample, they display ultrathin nanosheet morphology with a thickness of ∼20 nm, highly open porous structure, and easily accessible active sites of surface superoxide species. Upon decoration of 2D mesoporous Ce0.8Zr0.2O2 nanosheets with Pt nanoparticles, the obtained catalyst exhibits superior catalytic activity and stability toward CO oxidation with a low onset temperature of 30 °C and a 100% conversion temperature of 95 °C, which are 35-70 °C lower than those for their counterpart materials, namely, three-dimensional (3D) mesoporous Pt/Ce0.8Zr0.2O2. Moreover, their TOFPt value is ∼11.3 times higher than that of 3D mesoporous Pt/Ce0.8Zr0.2O2. Characterizations based on various techniques indicate that such an outstanding catalytic performance is due to the ultrashort distance (20 nm) of mass diffusion, highly exposed active sites, rich surface-chemisorbed oxygen, and the synergistic effect between the Ce0.8Zr0.2O2 matrix and Pt species.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Yidong Zou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Xinran Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
| | - Fahad A Alharthi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Alghamdi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
16
|
Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Nasrollahzadeh M, Shafiei N, Nezafat Z, Sadat Soheili Bidgoli N, Soleimani F, Varma RS. Valorisation of Fruits, their Juices and Residues into Valuable (Nano)materials for Applications in Chemical Catalysis and Environment. CHEM REC 2020; 20:1338-1393. [PMID: 32990405 DOI: 10.1002/tcr.202000078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
One of the most abundant wastes from all around the world is nutrient resources. Among them, fruits, their extracts, and residues comprise a major portion, which contain many valuable components that get lost during disposal or become burden on the shrinking landfills. These concerns are addressed by seeking sustainable processing methods that would have a minimal environmental impact. The crops contain renewable chemicals which are useful for catalysis, wastewater treatment, or preparation of nanomaterials; there has been an upsurge for the industrial applications of (nano)materials as their environmental and catalytic appliances is a fascinating subject to design cheaper and safer catalytic systems. Due to the excellent chemical properties of the fruit extracts, they have garnered attention as cost-effective catalysts and support materials. This review focuses on the preparation of (nano)materials and their catalytic and environmental applications and highlights the potential appliances and industrial benefits derived from these low-cost renewable and sustainable greener sources thus essentially converting waste into wealth.
Collapse
Affiliation(s)
| | - Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | | | - Fahimeh Soleimani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
18
|
Yu M, Moon G, Castillo RG, DeBeer S, Weidenthaler C, Tüysüz H. Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2020; 59:16544-16552. [PMID: 32537829 PMCID: PMC7540465 DOI: 10.1002/anie.202003801] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 11/11/2022]
Abstract
Herein, we show that the performance of mesostructured cobalt oxide electrocatalyst for oxygen evolution reaction (OER) can be significantly enhanced by coupling of silver species. Various analysis techniques including pair distribution function and Rietveld refinement, X-ray absorption spectroscopy at synchrotron as well as advanced electron microscopy revealed that silver exists as metallic Ag particles and well-dispersed Ag2 O nanoclusters within the mesostructure. The benefits of this synergy are twofold for OER: highly conductive metallic Ag improves the charge transfer ability of the electrocatalysts while ultra-small Ag2 O clusters provide the centers that can uptake Fe impurities from KOH electrolyte and boost the catalytic efficiency of Co-Ag oxides. The current density of mesostructured Co3 O4 at 1.7 VRHE is increased from 102 to 211 mA cm-2 with incorporation of silver spices. This work presents the dual role of silver moieties and demonstrates a simple method to increase the OER activity of Co3 O4 .
Collapse
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Gun‐hee Moon
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Rebeca G. Castillo
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Claudia Weidenthaler
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
19
|
Yu M, Moon G, Castillo RG, DeBeer S, Weidenthaler C, Tüysüz H. Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Gun‐hee Moon
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Rebeca G. Castillo
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
20
|
Arafat Y, Azhar MR, Zhong Y, Xu X, Tadé MO, Shao Z. A Porous Nano-Micro-Composite as a High-Performance Bi-Functional Air Electrode with Remarkable Stability for Rechargeable Zinc-Air Batteries. NANO-MICRO LETTERS 2020; 12:130. [PMID: 34138109 PMCID: PMC7770687 DOI: 10.1007/s40820-020-00468-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/21/2020] [Indexed: 05/24/2023]
Abstract
The development of bi-functional electrocatalyst with high catalytic activity and stable performance for both oxygen evolution/reduction reactions (OER/ORR) in aqueous alkaline solution is key to realize practical application of zinc-air batteries (ZABs). In this study, we reported a new porous nano-micro-composite as a bi-functional electrocatalyst for ZABs, devised by the in situ growth of metal-organic framework (MOF) nanocrystals onto the micrometer-sized Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) perovskite oxide. Upon carbonization, MOF was converted to porous nitrogen-doped carbon nanocages and ultrafine cobalt oxides and CoN4 nanoparticles dispersing inside the carbon nanocages, which further anchored on the surface of BSCF oxide. We homogeneously dispersed BSCF perovskite particles in the surfactant; subsequently, ZIF-67 nanocrystals were grown onto the BSCF particles. In this way, leaching of metallic or organic species in MOFs and the aggregation of BSCF were effectively suppressed, thus maximizing the number of active sites for improving OER. The BSCF in turn acted as catalyst to promote the graphitization of carbon during pyrolysis, as well as to optimize the transition metal-to-carbon ratio, thus enhancing the ORR catalytic activity. A ZAB fabricated from such air electrode showed outstanding performance with a potential gap of only 0.83 V at 5 mA cm-2 for OER/ORR. Notably, no obvious performance degradation was observed for the continuous charge-discharge operation for 1800 cycles over an extended period of 300 h.
Collapse
Affiliation(s)
- Yasir Arafat
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Muhammad Rizwan Azhar
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
- School of Engineering, Edith Cowan University, Perth, WA, 6027, Australia
| | - Yijun Zhong
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Moses O Tadé
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia.
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Yu M, Waag F, Chan CK, Weidenthaler C, Barcikowski S, Tüysüz H. Laser Fragmentation-Induced Defect-Rich Cobalt Oxide Nanoparticles for Electrochemical Oxygen Evolution Reaction. CHEMSUSCHEM 2020; 13:520-528. [PMID: 31756030 PMCID: PMC7028056 DOI: 10.1002/cssc.201903186] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 05/05/2023]
Abstract
Sub-5 nm cobalt oxide nanoparticles are produced in a flowing water system by pulsed laser fragmentation in liquid (PLFL). Particle fragmentation from 8 nm to 4 nm occurs and is attributed to the oxidation process in water where oxidative species are present and the local temperature is rapidly elevated under laser irradiation. Significantly higher surface area, crystal phase transformation, and formation of structural defects (Co2+ defects and oxygen vacancies) through the PLFL process are evidenced by detailed structural characterizations by nitrogen physisorption, electron microscopy, synchrotron X-ray diffraction, and X-ray photoelectron spectroscopy. When employed as electrocatalysts for the oxygen evolution reaction under alkaline conditions, the fragmented cobalt oxides exhibit superior catalytic activity over pristine and nanocast cobalt oxides, delivering a current density of 10 mA cm-2 at 369 mV and a Tafel slope of 46 mV dec-1 , which is attributed to a larger exposed active surface area, the formation of defects, and an increased charge transfer rate. The study provides an effective approach to engineering cobalt oxide nanostructures in a flowing water system, which shows great potential for sustainable production of active cobalt catalysts.
Collapse
Affiliation(s)
- Mingquan Yu
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Friedrich Waag
- Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenDuisburg47057Germany
- Institute of Technical Chemistry IUniversity of Duisburg-EssenEssen45141Germany
| | - Candace K. Chan
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
- Materials Science and EngineeringSchool for Engineering of Matter, Transport and EnergyArizona State UniversityTempeArizona85287USA
| | - Claudia Weidenthaler
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Stephan Barcikowski
- Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenDuisburg47057Germany
- Institute of Technical Chemistry IUniversity of Duisburg-EssenEssen45141Germany
| | - Harun Tüysüz
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
22
|
Li Y, Zhao T, Lu M, Wu Y, Xie Y, Xu H, Gao J, Yao J, Qian G, Zhang Q. Enhancing Oxygen Evolution Reaction through Modulating Electronic Structure of Trimetallic Electrocatalysts Derived from Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901940. [PMID: 31486591 DOI: 10.1002/smll.201901940] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/21/2019] [Indexed: 05/27/2023]
Abstract
The construction of efficient, durable, and non-noble metal electrocatalysts for oxygen evolution reaction (OER) is of great value but challenging. Herein, a facile method is developed to synthesize a series of trimetallic (W/Co/Fe) metal-organic frameworks (MOFs)-derived carbon nanoflakes (CNF) with various Fe content, and an Fe-dependent volcano-type plot can be drawn out for WCoFex -CNF. The optimized WCoFe0.3 -CNF (when the feed ratio of Fe/Co is 0.3) demonstrates superior electrocatalytic performance with a low overpotential of only 254 mV@10 mA cm-2 and excellent durability of 100 h. Further researches show that appropriate amount of iron doping can regulate the electronic structure, resulting in a favorable synergistic environment. This method may stimulate the exploration of electrocatalysts by utilizing MOFs as precursors while realizing electronic modulation by multimetal doping.
Collapse
Affiliation(s)
- Yuwen Li
- Institute of Fiber Based New Energy Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Zhao
- Institute of Fiber Based New Energy Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengting Lu
- Institute of Fiber Based New Energy Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuhang Wu
- Institute of Fiber Based New Energy Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanbo Xie
- Institute of Fiber Based New Energy Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Xu
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Junkuo Gao
- Institute of Fiber Based New Energy Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Juming Yao
- Institute of Fiber Based New Energy Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qichun Zhang
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
23
|
Li G, Xu Q, Shi W, Fu C, Jiao L, Kamminga ME, Yu M, Tüysüz H, Kumar N, Süß V, Saha R, Srivastava AK, Wirth S, Auffermann G, Gooth J, Parkin S, Sun Y, Liu E, Felser C. Surface states in bulk single crystal of topological semimetal Co 3Sn 2S 2 toward water oxidation. SCIENCE ADVANCES 2019; 5:eaaw9867. [PMID: 31453332 PMCID: PMC6697436 DOI: 10.1126/sciadv.aaw9867] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/10/2019] [Indexed: 05/19/2023]
Abstract
The band inversion in topological phase matters bring exotic physical properties such as the topologically protected surface states (TSS). They strongly influence the surface electronic structures of the materials and could serve as a good platform to gain insight into the surface reactions. Here we synthesized high-quality bulk single crystals of Co3Sn2S2 that naturally hosts the band structure of a topological semimetal. This guarantees the existence of robust TSS from the Co atoms. Co3Sn2S2 crystals expose their Kagome lattice that constructed by Co atoms and have high electrical conductivity. They serves as catalytic centers for oxygen evolution process (OER), making bonding and electron transfer more efficient due to the partially filled orbital. The bulk single crystal exhibits outstanding OER catalytic performance, although the surface area is much smaller than that of Co-based nanostructured catalysts. Our findings emphasize the importance of tailoring TSS for the rational design of high-activity electrocatalysts.
Collapse
Affiliation(s)
- Guowei Li
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Corresponding author. (G.L.); (Y.S.); (E.L.); (C.F.)
| | - Qiunan Xu
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Wujun Shi
- School of Physical Science and Technology, ShanghaiTech University, 201203 Shanghai, China
| | - Chenguang Fu
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Lin Jiao
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Machteld E. Kamminga
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, Netherlands
| | - Mingquan Yu
- Max Planck Institute for Coal Research, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Max Planck Institute for Coal Research, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Nitesh Kumar
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Vicky Süß
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Rana Saha
- Max Planck Institute for Microstructure Physics, 06120 Halle, Germany
| | | | - Steffen Wirth
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Gudrun Auffermann
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Johannes Gooth
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Stuart Parkin
- Max Planck Institute for Microstructure Physics, 06120 Halle, Germany
| | - Yan Sun
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Corresponding author. (G.L.); (Y.S.); (E.L.); (C.F.)
| | - Enke Liu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Corresponding author. (G.L.); (Y.S.); (E.L.); (C.F.)
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Corresponding author. (G.L.); (Y.S.); (E.L.); (C.F.)
| |
Collapse
|
24
|
Behnken J, Yu M, Deng X, Tüysüz H, Harms C, Dyck A, Wittstock G. Oxygen Reduction Reaction Activity of Mesostructured Cobalt‐Based Metal Oxides Studied with the Cavity‐Microelectrode Technique. ChemElectroChem 2019. [DOI: 10.1002/celc.201900722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Julian Behnken
- DLR Institute of Networked Energy Systems 26129 Oldenburg Germany
- Institute of ChemistryCarl von Ossietzky University 26129 Oldenburg Germany
| | - Mingquan Yu
- Max-Planck-Institut für Kohlenforschung 45470 Mühlheim an der Ruhr Germany
| | - Xiaohui Deng
- Max-Planck-Institut für Kohlenforschung 45470 Mühlheim an der Ruhr Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung 45470 Mühlheim an der Ruhr Germany
| | - Corinna Harms
- DLR Institute of Networked Energy Systems 26129 Oldenburg Germany
| | - Alexander Dyck
- DLR Institute of Networked Energy Systems 26129 Oldenburg Germany
| | - Gunther Wittstock
- Institute of ChemistryCarl von Ossietzky University 26129 Oldenburg Germany
| |
Collapse
|
25
|
Liu Z, Yu X, Yu H, Xue H, Feng L. Nanostructured FeNi 3 Incorporated with Carbon Doped with Multiple Nonmetal Elements for the Oxygen Evolution Reaction. CHEMSUSCHEM 2018; 11:2703-2709. [PMID: 29892992 DOI: 10.1002/cssc.201801250] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 05/15/2023]
Abstract
The sluggish oxygen evolution reaction (OER) through water electrolysis is still challenging. Herein, a facile approach to fabricate highly efficient nanostructured FeNi3 incorporated on carbon doped with multiple nonmetal elements (FeNi3 /M-C) was prepared by annealing an in situ polymerized metal complex from economical precursors. The temperature dependence of the structure and the catalytic performance for the OER was probed. The best pyrolysis temperature was 800 °C, at which the fabricated material exhibited the highest catalytic performance for the OER. Specifically, an overpotential as low as 246 mV (no IR correction) afforded 10 mA cm-2 with a low Tafel slope of 40 mV dec-1 , exceeding that of the best noble-metal catalyst IrO2 and other similar Fe-Ni alloys. High catalytic efficiency and anticorrosion ability towards the OER were displayed in terms of high specific surface area, rapid kinetics, high stability, and specific activity. The excellent performance was correlated to the structure and the modest graphitization degree of carbon and an appropriate ratio between graphitic and pyridinic N atoms and the synergistic effect between the Fe-Ni alloy active sites and the conducting carbon doped with multiple nonmetal elements. Moreover, as a powder catalyst, it could be applied in a real polymer electrolyte membrane electrolyzer. These results are helpful for understanding the improved catalytic activity and the promotion of the catalytic efficiency of the Fe-Ni alloy materials for the OER.
Collapse
Affiliation(s)
- Zong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Huaguang Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| |
Collapse
|