1
|
Sharifpour H, Hekmat F, Shahrokhian S. Unraveling the Ion Uptake Capacitive Deionization of Sea- and Highly Saline-Water by Sulfur and Nitrogen Co-Doped Porous Carbon Modified with Molybdenum Sulfide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42568-42584. [PMID: 37665661 DOI: 10.1021/acsami.3c07809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In parallel to the depletion of potable water reservoirs, novel technologies have been developed for seawater softening, as it is the most abundant source for generating deionized water. Although salt removal at subosmotic pressures and ambient temperatures by applying low-operating potentials with high energy efficiency made capacitive deionization (CDI) an advantageous water-softening process, its practical application is limited by insufficient ion removal capacity and low concentration influent. The performance of a CDI system is in progress with engineering the electrode active materials, also facilitating the advance design in highly saline- and seawater study. Herein, an innovative strategy was developed to provide high-performance CDI systems based on efficient and electrochemical ion-uptake active materials with a simple initial preparation. Nitrogen-doped porous carbons (N-pCs) received benefits from a high specific surface area and good surface wettability. The N-pCs were modified with molybdenum oxide/sulfide intercalative array and developed as CDI electrode active materials for desalination of both low/medium saline- and seawater. The MoS2/S,N-pC electrode materials exhibited perfect optimized salt adsorption capacity (SACs) of 47.9 mg g-1 when compared to N-pC (37.9 mg g-1) and MoO3/N-pC (39.6 mg g-1) counterparts at 1.4 V in a 750 ppm NaCl solution. In addition, the assembled CDI cells exhibited reasonable cycle stability and retained 96.7% of their initial SAC in continuous CDI cycles for 128,000 s. The fabricated CDI cell rendered an excellent salt removal efficiency (SRE, %) of 13.34% from the real seawater sample at 1.2 V. In detail, the SRE % of the NaCl, KCl, MgCl2, and CaCl2 soluble salts with respect to seawater sample exhibited a remarkable SRE % of 30.8%, 36%, 32.6%, and 19.3%, respectively. These SRE % values (>13.34%) provide convincing evidence on the reasonable ion uptake capability of the fabricated CDI cells for removing Na+, K+, Mg2+, and Ca2+ ions compared to other soluble component. The advanced cell design parallel to the promising outcomes provided herein makes these CDI systems immensely propitious for efficient water softening.
Collapse
Affiliation(s)
- Hanieh Sharifpour
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Farzaneh Hekmat
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| |
Collapse
|
2
|
Mao Y, Qin H, Zhang H, Wu W, Wu D. Unraveling the effect of CDI electrode characteristics on Cs removal from the perspective of ion transfer and energy composition. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131263. [PMID: 36989788 DOI: 10.1016/j.jhazmat.2023.131263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Capacitive deionization (CDI) is surprisingly efficient to remove the aqueous Cs ion due to its small hydrated size and low hydration energy. But current experimental techniques fail in investigating deeply into the influence of some key electrode characteristics due to the difficulty in experimentally fabricating the electrodes as desired. This work presents a dynamic transport model of salt ions in a flow-by CDI cell. By using this model, the electrode thickness, macro- and micro-porosity are investigated to evaluate Cs ion removal efficiency and energy efficiency particularly from the aspect of ion transfer by the approach of decomposing energy contribution. The results indicate that the thick electrode coupled with the high current could greatly improve the effluent quality, but reduce the salt adsorption capacity (SAC). The increasement of the current density from 3 A/m2 to 6 A/m2 greatly decreases the SAC from 4.0 mg/g to 0.8 mg/g. Lower current could prolong the charging period, leading to more ions stored in the micropore. Not all the electrical energy is consumed for separating ions from the feed as desired, but some are used for driving ions diffusing in the electrodes. Consequently charging efficiency will be reduced especially when the electrodes are characterized with high porosity. It is highlighted that future work is required to further consider the complex details of porous structure and pore connectivity.
Collapse
Affiliation(s)
- Yunfeng Mao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China
| | - Huai Qin
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hua Zhang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
| | - Weidong Wu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Alkhadra MA, Jordan ML, Tian H, Arges CG, Bazant MZ. Selective and Chemical-Free Removal of Toxic Heavy Metal Cations from Water Using Shock Ion Extraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14091-14098. [PMID: 36150156 DOI: 10.1021/acs.est.2c05042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical methods are known to have attractive features and capabilities when used for ion separations and water purification. In this study, we developed a new process called shock ion extraction (shock IX) for selective and chemical-free removal of toxic heavy metals from water. Shock IX is a hybrid process that combines shock electrodialysis (shock ED) and ion exchange using an ion exchange resin wafer (IERW), and this method can be thought of functionally as an electrochemically assisted variation of traditional ion exchange. In particular, shock IX exhibits greater ion removal and selectivity for longer periods of time, compared to the use of ion exchange alone. The use of an IERW in shock ED also increases multivalent ion selectivity, reduces energy consumption, and improves the hydrodynamics and scalability of the system.
Collapse
Affiliation(s)
- Mohammad A Alkhadra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew L Jordan
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Huanhuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher G Arges
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Shocron A, Atlas I, Suss M. Predicting ion selectivity in water purification by capacitive deionization: electric double layer models. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Schuur B, Brouwer T, Sprakel LMJ. Recent Developments in Solvent-Based Fluid Separations. Annu Rev Chem Biomol Eng 2021; 12:573-591. [PMID: 33852351 DOI: 10.1146/annurev-chembioeng-102620-015346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most important developments in solvent-based fluid separations, separations involving at least one fluid phase, are reviewed. After a brief introduction and discussion on general solvent trends observed in all fields of application, several specific fields are discussed. Important solvent trends include replacement of traditional molecular solvents by ionic liquids and deep eutectic solvents and, more recently, increasing discussion around bio-based solvents in some application fields. Furthermore, stimuli-responsive systems are discussed; the most significant developments in this field are seen for CO2-switchable and redox-responsive solvents. Discussed fields of application include hydrocarbons separations, carbon capture, biorefineries, and metals separations. For all but the hydrocarbons separations, newly reported electrochemically mediated separations seem to offer exciting new windows of opportunities.
Collapse
Affiliation(s)
- Boelo Schuur
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; , ,
| | - Thomas Brouwer
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; , ,
| | - Lisette M J Sprakel
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands; , ,
| |
Collapse
|
6
|
Kim K, Candeago R, Rim G, Raymond D, Park AHA, Su X. Electrochemical approaches for selective recovery of critical elements in hydrometallurgical processes of complex feedstocks. iScience 2021; 24:102374. [PMID: 33997673 PMCID: PMC8091062 DOI: 10.1016/j.isci.2021.102374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Critical minerals are essential for the ever-increasing urban and industrial activities in modern society. The shift to cost-efficient and ecofriendly urban mining can be an avenue to replace the traditional linear flow of virgin-mined materials. Electrochemical separation technologies provide a sustainable approach to metal recovery, through possible integration with renewable energy, the minimization of external chemical input, as well as reducing secondary pollution. In this review, recent advances in electrochemically mediated technologies for metal recovery are discussed, with a focus on rare earth elements and other key critical materials for the modern circular economy. Given the extreme heterogeneity of hydrometallurgically-derived media of complex feedstocks, we focus on the nature of molecular selectivity in various electrochemically assisted recovery techniques. Finally, we provide a perspective on the challenges and opportunities for process intensification in critical materials recycling, especially through combining electrochemical and hydrometallurgical separation steps.
Collapse
Affiliation(s)
- Kwiyong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Riccardo Candeago
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guanhe Rim
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Darien Raymond
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Reale ER, Shrivastava A, Smith KC. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization. WATER RESEARCH 2019; 165:114995. [PMID: 31450221 DOI: 10.1016/j.watres.2019.114995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Deionization devices that use intercalation reactions to reversibly store and release cations from solution show promise for energy-efficient desalination of alternative water resources. Intercalation materials often display low electronic conductivity that results in increased energy consumption during desalination. Accordingly, we performed experiments to quantify the impact of the size and mass fraction of conductive additives and insulative active particles on the effective electronic conductivity, ionic conductivity, and hydraulic permeability of porous electrodes. We find that Ketjen black conductive additives with nodules <50 nm in diameter produce superior electronic conductivity at lower mass fractions than the larger carbon blacks commonly used in capacitive deionization. Hydraulic permeability and effective ionic conductivity depend weakly on carbon black content and size, though smaller active particles decrease hydraulic permeability. Based on these results we analyzed the energy consumption and salt removal rate of different electrode formulations by constructing an electrochemical Ashby plot predicting the variation of desalination performance with electrode transport properties. Optimized electrodes containing insulative Prussian blue analogue (PBA) particles were then fabricated and used in an experimental cation intercalation desalination (CID) cell with symmetric electrodes. For 100 mM NaCl influent energy consumption varied from 7 to 33 kJ/mol when current density increased from 1 to 8 mA/cm2, approaching ten-fold increased salt removal rate at similar energy consumption levels to past CID demonstrations. Complementary numerical and analytical modeling indicates that further improvements in energy consumption and salt removal rate are attainable by enhancing transport in solution and within PBA agglomerates.
Collapse
Affiliation(s)
- Erik R Reale
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Aniruddh Shrivastava
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyle C Smith
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Computational Science and Engineering Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Guyes EN, Malka T, Suss ME. Enhancing the Ion-Size-Based Selectivity of Capacitive Deionization Electrodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8447-8454. [PMID: 31187620 DOI: 10.1021/acs.est.8b06954] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capacitive deionization (CDI) is an emerging water treatment technology often applied to brackish water desalination and water softening. Typical CDI cells consist of two microporous carbon electrodes sandwiching a dielectric separator, and desalt feedwater flowing through the cell by storing ions in electric double layers (EDLs) within charged micropores. CDI cells have demonstrated size-based ion selectivity wherein smaller hydrated ions are preferentially electrosorbed over larger hydrated ions. We demonstrate that such size-based selectivity can be substantially enhanced through the addition of chemical charge to micropores via surface functionalization. We develop a micropore EDL theory that includes both finite ion size effects and micropore chemical charge, which predicts such enhancements and elucidates that they result from denser counterion packing in micropores. With our experimental CDI cell, we desalted an electrolyte consisting of equimolar potassium (K+) and lithium (Li+) ions. We show that use of a surface-functionalized (oxidized) cathode significantly increased the electrosorption ratio of smaller K+ to larger Li+ compared to a cell with a pristine cathode, for example, from ∼1 to 1.84 for a charging voltage of 0.4 V. Our model predicts yet-higher electrosorption ratios are attainable, but our experimental cell suffered from significant cathode chemical charge degradation at applied voltages of ∼1 V.
Collapse
|
9
|
Liu X, Whitacre JF, Mauter MS. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12633-12641. [PMID: 30240196 DOI: 10.1021/acs.est.8b03261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Though electrochemical deionization technologies have been widely explored for brackish water desalination and selective ion removal, their sustained performance in the presence of foulants common to environmental waters remains unclear. This study investigates the fundamental mechanisms by which carbonaceous electrodes used in capacitive deionization and insertion electrodes used for high-capacity selective ion removal are affected by the presence of humic acid (HA). We evaluate HA adsorption behavior and the resulting impact on the ion storage capacity and cycling stability of the electrode materials. We find that HA is primarily adsorbed to the mesopores of two carbonaceous electrodes with distinctly different pore structures, but that the ion storage and transport properties of the electrodes are not significantly impacted by HA adsorption. In contrast, HA adsorption resulted in sharp capacity decay for the insertion (Na4Mn9O18) electrode. We attribute this decay to both hindered Na+ ion diffusion to the insertion interface in the presence of adsorbed HA, as well as HA mediated electrode dissolution. These findings highlight the contrasting mechanisms for HA fouling of capacitive and insertion electrodes and suggest that insertion electrodes may be more susceptible to performance decline in electrochemical deionization of environmental waters.
Collapse
Affiliation(s)
- Xitong Liu
- Department of Civil & Environmental Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Jay F Whitacre
- Department of Engineering and Public Policy , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
- Department of Material Science and Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
- The Scott Institute for Energy Innovation , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Meagan S Mauter
- Department of Civil & Environmental Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
- Department of Engineering and Public Policy , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
- The Scott Institute for Energy Innovation , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|