1
|
Poolwong J, Aomchad V, Del Gobbo S, Kleij AW, D'Elia V. Simple Halogen-Free, Biobased Organic Salts Convert Glycidol to Glycerol Carbonate under Atmospheric CO 2 Pressure. CHEMSUSCHEM 2022; 15:e202200765. [PMID: 35726476 DOI: 10.1002/cssc.202200765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Glycerol carbonate (GC) has emerged as an attractive synthetic target due to various promising technological applications. Among several viable strategies to produce GC from CO2 and glycerol and its derivatives, the cycloaddition of CO2 to glycidol represents an atom-economic an efficient strategy that can proceed via a halide-free manifold through a proton-shuttling mechanism. Here, it was shown that the synthesis of GC can be promoted by bio-based and readily available organic salts leading to quantitative GC formation under atmospheric CO2 pressure and moderate temperatures. Comparative and mechanistic experiments using sodium citrate as the most efficient catalyst highlighted the role of both hydrogen bond donor and weakly basic sites in the organic salt towards GC formation. The citrate salt was also used as a catalyst for the conversion of other epoxy alcohols. Importantly, the discovery that homogeneous organic salts catalyze the target reaction inspired us to use metal alginates as heterogeneous and recoverable bio-based catalysts for the same process.
Collapse
Affiliation(s)
- Jitpisut Poolwong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Vatcharaporn Aomchad
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Silvano Del Gobbo
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| |
Collapse
|
2
|
Abstract
Polyphenolic esters (PEs) are valuable chemical compounds that display a wide spectrum of activities (e.g., anti-oxidative effects). As a result, their production through catalytic routes is an attractive field of research. The present review aims to discuss recent studies from the literature regarding the catalytic production of PEs from biomass feedstocks, namely, naturally occurred polyphenolic compounds. Several synthetic approaches are reported in the literature, mainly bio-catalysis and to a lesser extent acid catalysis. Immobilized lipases (e.g., Novozym 435) are the preferred enzymes thanks to their high reactivity, selectivity and reusability. Acid catalysis is principally investigated for the esterification of polyphenolic acids with fatty alcohols and/or glycerol, using both homogeneous (p-toluensulfonic acid, sulfonic acid and ionic liquids) and heterogeneous (strongly acidic cation exchange resins) catalysts. Based on the reviewed publications, we propose some suggestions to improve the synthesis of PEs with the aim of increasing the greenness of the overall production process. In fact, much more attention should be paid to the use of new and efficient acid catalysts and their reuse for multiple reaction cycles.
Collapse
|
3
|
|
4
|
Abstract
Biomass is an interesting candidate raw material for the production of renewable hydrogen. The conversion of biomass into hydrogen can be achieved by several processes. In particular, this short review focuses on the recent advances in glycerol reforming to hydrogen, highlighting the development of new and active catalysts, the optimization of reaction conditions, and the use of non-innocent supports as advanced materials for supported catalysts. Different processes for hydrogen production from glycerol, especially aqueous phase reforming (APR) and steam reforming (SR), are described in brief. Thermodynamic analyses, which enable comparison with experimental studies, are also considered. In addition, research advances in terms of life cycle perspective applied to support R&D activities in the synthesis of renewable H2 from biomass are presented. Lastly, also featured is an evaluation of the studies published, as evidence of the increased interest of both academic research and the industrial community in biomass conversion to energy sources.
Collapse
|
5
|
Monica FD, Ricciardi M, Proto A, Cucciniello R, Capacchione C. Regioselective Ring-Opening of Glycidol to Monoalkyl Glyceryl Ethers Promoted by an [OSSO]-Fe III Triflate Complex. CHEMSUSCHEM 2019; 12:3448-3452. [PMID: 31282616 DOI: 10.1002/cssc.201901329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Indexed: 06/09/2023]
Abstract
A FeIII -triflate complex, bearing a bis-thioether-di-phenolate [OSSO]-type ligand, was discovered to promote the ring-opening of glycidol with alcohols under mild reaction conditions (0.05 mol % catalyst and 80 °C). The reaction proceeded with high activity (initial turnover frequency of 1680 h-1 for EtOH) and selectivity (>95 %) toward the formation of twelve monoalkyl glyceryl ethers (MAGEs) in a regioselective fashion (84-96 % yield of the non-symmetric regioisomer). This synthetic approach allows the conversion of a glycerol-derived platform molecule (i.e., glycidol) to high-value-added products by using an Earth-crust abundant metal-based catalyst.
Collapse
Affiliation(s)
- Francesco Della Monica
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132-84084, SA, Italy
| | - Maria Ricciardi
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132-84084, SA, Italy
| | - Antonio Proto
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132-84084, SA, Italy
| | - Raffaele Cucciniello
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132-84084, SA, Italy
| | - Carmine Capacchione
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132-84084, SA, Italy
| |
Collapse
|
6
|
Büttner H, Kohrt C, Wulf C, Schäffner B, Groenke K, Hu Y, Kruse D, Werner T. Life Cycle Assessment for the Organocatalytic Synthesis of Glycerol Carbonate Methacrylate. CHEMSUSCHEM 2019; 12:2701-2707. [PMID: 30938473 DOI: 10.1002/cssc.201900678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Bifunctional ammonium and phosphonium salts have been identified as potential organocatalysts for the synthesis of glycerol carbonate methacrylate (GCMA). Three of these catalysts showed high efficiency and allowed the conversion of glycidyl methacrylate with CO2 to the desired product in >99 % conversion and selectivity. Subsequently, immobilized analogues of selected catalysts were prepared and tested. A phenol-substituted phosphonium salt on a silica support proved to be a promising candidate in recycling experiments. The same catalyst was used in 12 consecutive runs, resulting in GCMA yields of up to 88 %. Furthermore, a life cycle assessment was conducted for the synthesis of GCMA starting from epichlorohydrin (EPH) and methacrylic acid (MAA). For the functional unit of 1 kg GCMA, 15 wt % was attributed to the incorporation of CO2 , which led to a reduction of the global warming potential of 3 % for the overall process.
Collapse
Affiliation(s)
- Hendrik Büttner
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| | - Christina Kohrt
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| | - Christoph Wulf
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| | | | - Karsten Groenke
- Evonik Industries AG, Paul-Baumann-Str. 1, 45772, Marl, Germany
| | - Yuya Hu
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| | - Daniela Kruse
- Evonik Industries AG, Paul-Baumann-Str. 1, 45772, Marl, Germany
| | - Thomas Werner
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
7
|
Bruniaux S, Varma RS, Len C. A Novel Strategy for Selective O-Methylation of Glycerol in Subcritical Methanol. Front Chem 2019; 7:357. [PMID: 31165064 PMCID: PMC6536655 DOI: 10.3389/fchem.2019.00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
A new regioselective approach has been elaborated for the selective conversion of bio-based glycerol into the monomethyl derivative using sub/supercritical methanol. The reaction was realized in a batch process using three reactive components, namely, glycerol, methanol, and potassium carbonate to selectively produce the 3-methoxypropan-1,2-diol in mild yields; the mechanism of the O-methylation has been delineated using labeled methanol and GC-MS experiments.
Collapse
Affiliation(s)
- Sophie Bruniaux
- Sorbonne Universités, Universite de Technologie de Compiegne, Compiègne, France
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Olomouc, Czechia
| | - Christophe Len
- Sorbonne Universités, Universite de Technologie de Compiegne, Compiègne, France.,PSL University, Chimie ParisTech, Paris, France
| |
Collapse
|
8
|
Optimization of the Synthesis of Glycerol Derived Monoethers from Glycidol by Means of Heterogeneous Acid Catalysis. Molecules 2018; 23:molecules23112887. [PMID: 30404134 PMCID: PMC6278263 DOI: 10.3390/molecules23112887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 11/17/2022] Open
Abstract
We present an efficient and green methodology for the synthesis of glycerol monoethers, starting from glycidol and different alcohols, by means of heterogeneous acid catalysis. A scope of Brønsted and Lewis acid catalysts were applied to the benchmark reaction of glycidol and methanol. The selected catalysts were cationic exchangers, such as Nafion NR50, Dowex 50WX2, Amberlyst 15 and K10-Montmorillonite, both in their protonic form and exchanged with Al(III), Zn(II) and Fe(III). Thus, total conversions were reached in short times by using 1 and 5% mol catalyst loading and room temperature, without the need for excess glycidol or the presence of a solvent. Finally, these conditions and the best catalysts were successfully applied to the reaction of glycidol with several alcohols such as butanol or isopropanol.
Collapse
|
9
|
Bio-Glycidol Conversion to Solketal over Acid Heterogeneous Catalysts: Synthesis and Theoretical Approach. Catalysts 2018. [DOI: 10.3390/catal8090391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present work deals with the novel use of heterogeneous catalysts for the preparation of solketal from bio-glycidol. Sustainable feedstocks and mild reaction conditions are considered to enhance the greenness of the proposed process. Nafion NR50 promotes the quantitative and selective acetalization of glycidol with acetone. DFT calculations demonstrate that the favored mechanism consists in the nucleophilic attack of acetone to glycidol concerted with the ring opening assisted by the acidic groups on the catalyst and in the following closure of the five member ring of the solketal.
Collapse
|
10
|
|