1
|
Zhang WM, Niu WT, Tan FF, Li Y. Selective Transformation of Biomass and the Derivatives for Aryl Compounds and Hydrogen via Visible-Light-Induced Radicals. Acc Chem Res 2025; 58:1407-1423. [PMID: 40078060 DOI: 10.1021/acs.accounts.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
ConspectusFor sustainable development, exploring renewable resources is an urgent priority. Nonfood biomass, one of the largest renewable resources on Earth, primarily comprises three key components: lignin (ca. 15-30%), cellulose (ca. 35-50%), and hemicellulose (ca. 20-30%). Theoretically, nonfood biomass can be converted into green chemicals and energy. However, most studies have focused on the generation of chemicals and carbon-based energy under harsh conditions, often resulting in lower selectivities. Therefore, further efforts to explore efficient and selective methods for producing chemicals and hydrogen (H2) are essential to promoting the practical applications of renewable biomass. In this Account, we summarize our contributions to the efficient and selective transformation of biomass and its derivatives into aryl compounds and H2. These transformations were achieved using visible-light-induced photocatalytic systems that generate active radicals to selectively cleave C-C, C-O, C-H, and O-H bonds under mild conditions, without using noble metals. First, aryl compound production was achieved by chemoselective cleavage of C-C and C-O bonds using aryl carboxyl radicals and aryl ether radical cations. Specifically, the aryl carboxyl radical in the charge-transfer complex induced the chemoselective cleavage of C-C bonds of aryl carboxylic acids, which are platform molecules derived from lignin oxidation; the aryl carboxyl radical in free form facilitated the chemoselective cleavage of C-O bonds in the model of the 4-O-5 lignin linkage. Moreover, arenols and aryl alcohols were obtained via cooperation of the aryl ether radical cation and the vanadate-induced chemoselective cleavage of the C-O bonds of the models of various lignin linkages. Second, we developed a streamlined strategy for H2 production from biomass using a one-pot, two-step route with formic acid (HCO2H) as an intermediate for H2 storage by thermocatalysis. Using this strategy by photoredox catalysis, HCO2H was initially obtained via the alkoxy radical-induced gradual cleavage of C-C bonds in cellulose, hemicellulose, glucose, and their derivatives. Subsequently, efficient H2 production from biomass-based HCO2H was realized via hydroxyl radical (·OH)-induced C-H and the following cleavage of the O-H bonds, with cooperation of the nickel catalysis. Third, the highest H2 production capability from biomass was achieved via efficient water reforming. This process utilized alkoxy radicals followed by generated carbon cations via electrocatalysis, inducing a well-organized cleavage of C-C, O-H, and C-H bonds. We anticipate that these insights will inspire the development of more efficient, stable, and cost-effective catalytic systems, accelerating the utilization of biomass as a renewable resource and driving other related significant transformations.
Collapse
Affiliation(s)
- Wen-Min Zhang
- Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China
| | - Wen-Ting Niu
- Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China
| | - Fang-Fang Tan
- Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China
| | - Yang Li
- Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China
| |
Collapse
|
2
|
Tayyab M, Mansoor S, Akmal Z, Khan M, Zhou L, Lei J, Zhang J. A binary dumbbell visible light driven photocatalyst for simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde. J Colloid Interface Sci 2024; 665:911-921. [PMID: 38569308 DOI: 10.1016/j.jcis.2024.03.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Photocatalytic H2 production with selective oxidation of organic moieties in an aqueous medium is a fascinating research area. However, the rational design of photocatalysts and their photocatalytic performance are still inadequate. In this work, we efficiently synthesized the MoS2 tipped CdS nanowires (NWs) photocatalyst using soft templates via the two-step hydrothermal method for efficient H2 production with selective oxidation of benzyl alcohol (BO) under visible light illumination. The optimized MoS2 tipped CdS NWs (20 % MoS2) photocatalyst exhibits the highest photocatalytic H2 production efficiency of 13.55 mmol g-1 h-1 with 99 % selective oxidation of BO, which was 42.34 and 2.21 times greater photocatalytic performance than that of pristine CdS NWs and MoS2/CdS NWs, respectively. The directional loading of MoS2 at the tips of CdS NWs (as compared to nondirectional MoS2 at CdS NWs) is the key factor towards superior H2 production with 99 % selective oxidation of BO and has an inhibitory effect on the photo corrosion of pristine CdS NWs. Therefore, the amazing enhancement in the photocatalytic performance and selectivity of optimized MoS2 tipped CdS NWs (20 % MoS2) photocatalyst is due to the spatial separation of their photoexcited charge carriers through the Schottky junction. Moreover, the unique structure of the MoS2 flower at the tip of 1D CdS NWs offers separate active sites for adsorption and surface reactions such as H2 production at the MoS2 flower (confirmed by Pt photo deposition) and subsequently the selective oxidation of BO at the stem of CdS NWs. This rational design of a photocatalyst could be an inspiring work for the further development of an efficient photocatalytic system for H2 production with selective oxidation of BO (a strategy of mashing two potatoes with one fork).
Collapse
Affiliation(s)
- Muhammad Tayyab
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Seemal Mansoor
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zeeshan Akmal
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Mazhar Khan
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liang Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
3
|
Feng KW, Li Y. Hydrogen Production from Formic Acid by In Situ Generated Ni/CdS Photocatalytic System under Visible Light Irradiation. CHEMSUSCHEM 2023; 16:e202202250. [PMID: 36705939 DOI: 10.1002/cssc.202202250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 05/06/2023]
Abstract
Simple and practical noble-metal-free catalyzed hydrogen production from sustainable resources, such as renewable formic acid, is highly desirable. Herein, the development of an efficient photocatalytic hydrogen production from aqueous solution of formic acid using in situ generated Ni/CdS photocatalytic system was described. CdS-Cys (Cys=l-cysteine) quantum dots (QDs) acting as photocatalyst with Ni(OAc)2 as H2 production catalyst precursor, a 94 % yield was obtained within 5 h under visible light irradiation at 50 °C. The average rate of H2 production reached up to 282 μmol mg-1 h-1 with 99.8 % H2 selectivity. Mechanistic studies indicate cooperation of dynamic quenching and static quenching of CdS-Cys QDs by Ni(OAc)2 . Especially, Ni0 , generated in the dynamic quenching, accelerated the electron transfer by acting as an electron outlet and enhancing the stability of CdS to slow down the photocorrosion distinctly, delivering efficient H2 production with high selectivity. Our study will inspire exploration of various efficient non-noble-metal catalysts for practical H2 production from bio-based formic acid.
Collapse
Affiliation(s)
- Kai-Wen Feng
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, P. R. China
| | - Yang Li
- State Key Laboratory of Multiphase Flow in Power Engineering and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, P. R. China
| |
Collapse
|
4
|
Ali S, Abdul Nasir J, Nasir Dara R, Rehman Z. Modification strategies of metal oxide photocatalysts for clean energy and environmental applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Hong D, Sharma A, Jiang D, Stellino E, Ishiyama T, Postorino P, Placidi E, Kon Y, Koga K. Laser Ablation Nanoarchitectonics of Au-Cu Alloys Deposited on TiO 2 Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation. ACS OMEGA 2022; 7:31260-31270. [PMID: 36092562 PMCID: PMC9453982 DOI: 10.1021/acsomega.2c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The regulation of H2 evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H2 production. We have successfully generated Au-Cu nanoalloys using a laser ablation method and deposited them on TiO2 photocatalyst films (Au x Cu100-x /TiO2). The Au-Cu/TiO2 films were employed as photocatalysts for H2 production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H2 evolution rate for Au20Cu80/TiO2 is archived to 62,500 μmol h-1 g-1 per photocatalyst weight. The remarkable performance of Au20Cu80/TiO2 may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au-Cu surface on TiO2 is vital to supply the photoexcited electrons of TiO2 to its surface for H2 evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts.
Collapse
Affiliation(s)
- Dachao Hong
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Aditya Sharma
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Dianping Jiang
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology, (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Elena Stellino
- Physics
and Geology Department, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Tomohiro Ishiyama
- Research
Institute for Energy Conservation, National
Institute of Advanced Industrial Science and Technology, (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Paolo Postorino
- Physics
Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ernesto Placidi
- Physics
Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Yoshihiro Kon
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kenji Koga
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology, (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
6
|
Li C, Du X, Jiang S, Liu Y, Niu Z, Liu Z, Yi S, Yue X. Constructing Direct Z-Scheme Heterostructure by Enwrapping ZnIn 2 S 4 on CdS Hollow Cube for Efficient Photocatalytic H 2 Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201773. [PMID: 35748163 PMCID: PMC9404389 DOI: 10.1002/advs.202201773] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/28/2022] [Indexed: 05/02/2023]
Abstract
Rational design hybrid nanostructure photocatalysts with efficient charge separation and transfer, and good solar light harvesting ability have critical significance for achieving high solar-to-chemical conversion efficiency. Here a highly active and stable composite photocatalyst is reported by integrating ultrathin ZnIn2 S4 nanosheets on surface of hollow CdS cube to form the cube-in-cube structure. Experimental results combined with density functional theory calculations confirm that the Z-scheme ZnIn2 S4 /CdS heterojunction is formed, which highly boosts the charge separation and transfer under the local-electric-field at semiconductor/semiconductor interface, and thus prolongs their lifetimes. Moreover, such a structure affords the highly enhanced light-harvesting property. The optimized ZnIn2 S4 /CdS nanohybrids exhibit superior H2 generation rate under visible-light irradiation (λ ≥ 420 nm) with excellent photochemical stability during 20 h continuous operation.
Collapse
Affiliation(s)
- Chuan‐Qi Li
- College of ChemistryZhengzhou UniversityZhengzhou450001China
- Henan Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450003China
| | - Xin Du
- College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Shan Jiang
- College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Yan Liu
- College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Zhu‐Lin Niu
- College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Zhong‐Yi Liu
- College of ChemistryZhengzhou UniversityZhengzhou450001China
- Henan Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450003China
| | - Sha‐Sha Yi
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Xin‐Zheng Yue
- College of ChemistryZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
7
|
Liu HZ, Liu X, Li B, Luo H, Ma JG, Cheng P. Hybrid Metal-Organic Frameworks Encapsulated Hybrid Ni-Doped CdS Nanoparticles for Visible-Light-Driven CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28123-28132. [PMID: 35679596 DOI: 10.1021/acsami.2c08776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The photocatalytic production of syngas from CO2 and water is an attractive and straightforward way for both solar energy storage and sustainable development. Here, we combined the hybrid shell of a bimetallic metal-organic framework (MOF) Zn/Co-zeolitic imidazolate framework (ZIF) and the hybrid photoactive center of Ni-doped CdS nanoparticles (Ni@CdS) to construct a new "2 + 2" photocatalysis system Ni@CdS⊂Zn/Co-ZIF through a facile self-assembly process, which exhibited a double-synergic effect for visible light harvesting and CO2 conversion, leading to one of the highest photocatalytic syngas production rates and excellent recyclability. The H2/CO of syngas ratios can be readily adjusted by controlling the ratio of Zn/Co in the hybrid MOF shell.
Collapse
Affiliation(s)
- Heng-Zhi Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haiqiang Luo
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Gong Ma
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Graphitic carbon nitride embedded Ni3(VO4)2/ZnCr2O4 Z-scheme photocatalyst for efficient degradation of p-chlorophenol and 5-fluorouracil. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Ariza-Roldán A, López-Cardoso M, Tlahuext H, Vargas-Pineda G, Román-Bravo P, Acevedo-Quiroz M, Alvarez-Fitz P, Cea-Olivares R. Synthesis, characterization, and biological evaluation of eight new organotin(IV) complexes derived from (1R, 2S) ephedrinedithiocarbamate ligand. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Solar light driven photoelectrochemical water splitting using Mn-doped CdS quantum dots sensitized hierarchical rosette-rod TiO2 photoanodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ullah H, Balkan T, Butler IS, Kaya S, Rehman ZU. Surfactant-free synthesis of CdS nanorods for efficient reduction of carcinogenic Cr(VI). J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1913729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Haseeb Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
- Koç University Tüpraş Energy Center (KUTEM), Istanbul, Turkey
| | - Timuçin Balkan
- Koç University Tüpraş Energy Center (KUTEM), Istanbul, Turkey
- Department of Chemistry, Koç University, Istanbul, Turkey
| | - Ian S. Butler
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Sarp Kaya
- Koç University Tüpraş Energy Center (KUTEM), Istanbul, Turkey
- Department of Chemistry, Koç University, Istanbul, Turkey
| | - Zia ur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
12
|
Wang T, Yang L, Jiang D, Cao H, Minja AC, Du P. CdS Nanorods Anchored with Crystalline FeP Nanoparticles for Efficient Photocatalytic Formic Acid Dehydrogenation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23751-23759. [PMID: 33988354 DOI: 10.1021/acsami.1c04178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photocatalytic dehydrogenation of formic acid is a promising strategy for H2 generation. In this work, we report the use of crystalline iron phosphide (FeP) nanoparticles as an efficient and robust cocatalyst on CdS nanorods (FeP@CdS) for highly efficient photocatalytic formic acid dehydrogenation. The optimal H2 evolution rate can reach ∼556 μmol·h-1 at pH 3.5, which is more than 37 times higher than that of bare CdS. Moreover, the photocatalyst demonstrates excellent stability; no significant decrease of the catalytic activity was observed during continuous testing for more than four days. The apparent quantum yield is ∼54% at 420 nm, which is among the highest values obtained using noble-metal-free photocatalysts for formic acid dehydrogenation. This work provides a novel strategy for designing highly efficient and economically viable photocatalysts for formic acid dehydrogenation.
Collapse
Affiliation(s)
- Taotao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Lechen Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Daochuan Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Hongyun Cao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Antony Charles Minja
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
Liu Y, Yu T, Zeng Y, Chen J, Yang G, Li Y. Efficient acceptorless dehydrogenation of hydrogen-rich N-heterocycles photocatalyzed by Ni(OH)2@CdSe/CdS quantum dots. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00366f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ni(OH)2@CdSe/CdS QDs exhibit excellent photocatalytic acceptorless dehydrogenation of hydrogen-rich N-heterocycles with the release of hydrogen at ambient temperature.
Collapse
Affiliation(s)
- Yanpeng Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Tianjun Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Jinping Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Guoqiang Yang
- University of Chinese Academy of Sciences
- Beijing
- P. R. China
- Key Laboratory of Photochemistry
- Institute of Chemistry
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
14
|
Effective charge separation through the sulfur vacancy interfacial in n-CdO/p-CdS bulk heterojunction particle and its solar-induced hydrogen production. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Wang X, Zheng X, Han H, Fan Y, Zhang S, Meng S, Chen S. Photocatalytic hydrogen evolution from biomass (glucose solution) on Au/CdS nanorods with Au3+ self-reduction. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Irfan RM, Wang T, Jiang D, Yue Q, Zhang L, Cao H, Pan Y, Du P. Homogeneous Molecular Iron Catalysts for Direct Photocatalytic Conversion of Formic Acid to Syngas (CO+H
2
). Angew Chem Int Ed Engl 2020; 59:14818-14824. [DOI: 10.1002/anie.202002757] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Rana Muhammad Irfan
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Taotao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Daochuan Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Qiudi Yue
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Lei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Hongyun Cao
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory University of Science and Technology of China 443 Huangshan Rd Hefei Anhui Province 230029 P. R. China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
- National Synchrotron Radiation Laboratory University of Science and Technology of China 443 Huangshan Rd Hefei Anhui Province 230029 P. R. China
| |
Collapse
|
17
|
Irfan RM, Wang T, Jiang D, Yue Q, Zhang L, Cao H, Pan Y, Du P. Homogeneous Molecular Iron Catalysts for Direct Photocatalytic Conversion of Formic Acid to Syngas (CO+H
2
). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rana Muhammad Irfan
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Taotao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Daochuan Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Qiudi Yue
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Lei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Hongyun Cao
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory University of Science and Technology of China 443 Huangshan Rd Hefei Anhui Province 230029 P. R. China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 P. R. China
- National Synchrotron Radiation Laboratory University of Science and Technology of China 443 Huangshan Rd Hefei Anhui Province 230029 P. R. China
| |
Collapse
|
18
|
Bhavani P, Kumar DP, Shim HS, Rangappa P, Gopannagari M, Reddy DA, Song JK, Kim TK. In situ addition of Ni salt onto a skeletal Cu7S4 integrated CdS nanorod photocatalyst for efficient production of H2 under solar light irradiation. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02612f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of earth-abundant, low cost, skeletal-type copper sulfide superstructures and in situ addition of Ni salts plays a prominent role to enhance the activity of CdS semiconductor nanostructures for photocatalytic H2 production.
Collapse
Affiliation(s)
- P. Bhavani
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - D. Praveen Kumar
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Hyung Seop Shim
- Department of Chemistry
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Putta Rangappa
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | | | | | - Jae Kyu Song
- Department of Chemistry
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Tae Kyu Kim
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| |
Collapse
|
19
|
Navlani-García M, Salinas-Torres D, Mori K, Kuwahara Y, Yamashita H. Photocatalytic Approaches for Hydrogen Production via Formic Acid Decomposition. Top Curr Chem (Cham) 2019; 377:27. [PMID: 31559502 DOI: 10.1007/s41061-019-0253-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
The photocatalytic dehydrogenation of formic acid has recently emerged as an outstanding alternative to the traditional thermal catalysts widely applied in this reaction. The utilization of photocatalytic processes for the production of hydrogen is an appealing strategy that perfectly matches with the idea of a green and sustainable future energy scenario. However, it sounds easier than it is, and great efforts have been needed to design and develop highly efficient photocatalysts for the production of hydrogen from formic acid. In this work, some of the most representative strategies adopted for this application are reviewed, paying particular attention to systems based on TiO2, CdS and C3N4.
Collapse
Affiliation(s)
- Miriam Navlani-García
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.,University Materials Institute of Alicante (IUMA), University of Alicante (UA), Ap. 99, 03080, Alicante, Spain
| | - David Salinas-Torres
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.,University Materials Institute of Alicante (IUMA), University of Alicante (UA), Ap. 99, 03080, Alicante, Spain
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Unit of Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan.
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Unit of Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Unit of Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan.
| |
Collapse
|
20
|
Luo J, Zhang S, Sun M, Yang L, Luo S, Crittenden JC. A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS NANO 2019; 13:9811-9840. [PMID: 31365227 DOI: 10.1021/acsnano.9b03649] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Solar energy is a renewable resource that can supply our energy needs in the long term. A semiconductor photocatalysis that is capable of utilizing solar energy has appealed to considerable interests for recent decades, owing to the ability to aim at environmental problems and produce renewal energy. Much effort has been put into the synthesis of a highly efficient semiconductor photocatalyst to promote its real application potential. Hence, we reviewed the most advanced methods and strategies in terms of (i) broadening the light absorption wavelengths, (ii) design of active reaction sites, and (iii) control of the electron-hole (e--h+) recombination, while these three processes could be influenced by remodeling the crystal lattice, surface, and interface. Additionally, we individually examined their current applications in energy conversion (i.e., hydrogen evolution, CO2 reduction, nitrogen fixation, and oriented synthesis) and environmental remediation (i.e., air purification and wastewater treatment). Overall, in this review, we particularly focused on advanced photocatalytic activity with simultaneous wastewater decontamination and energy conversion and further enriched the mechanism by proposing the electron flow and substance conversion. Finally, this review offers the prospects of semiconductor photocatalysts in the following three vital (distinct) aspects: (i) the large-scale preparation of highly efficient photocatalysts, (ii) the development of sustainable photocatalysis systems, and (iii) the optimization of the photocatalytic process for practical application.
Collapse
Affiliation(s)
- Jinming Luo
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering , Georgia Institute of Technology , 828 West Peachtree Street , Atlanta , Georgia 30332 , United States
| | - Shuqu Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , Jiangxi Province , People's Republic of China
| | - Meng Sun
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Lixia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , Jiangxi Province , People's Republic of China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle , Nanchang Hangkong University , Nanchang 330063 , Jiangxi Province , People's Republic of China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering , Georgia Institute of Technology , 828 West Peachtree Street , Atlanta , Georgia 30332 , United States
| |
Collapse
|