1
|
Dai Y, Chen XH, Fu HC, Zhang Q, Li T, Li NB, Luo HQ. In-situ revealed inhibition of W 2C to excessive oxidation of CoOOH for high-efficiency alkaline overall water splitting. J Colloid Interface Sci 2024; 676:425-434. [PMID: 39033677 DOI: 10.1016/j.jcis.2024.07.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The design of low-cost, efficient, and stable multifunctional basic catalysts to replace the high-cost noble metal catalysts remains a challenge. In this work, we report a dual-component Co-W2C catalytic system which achieves excellent properties of hydrogen evolution reaction (HER, η10 = 63 mV), oxygen evolution reaction (OER, η10 = 259 mV) and overall water splitting (η10 = 1.53 V) by adjusting the interfacial electronic structure of the material. Further density functional theory (DFT) calculations indicate that the efficient electronic modulation at the W2C/Co interface leads to the generation of favorable hydroxyl and hydrogen species energetics on the hybrid surface. The results of the in-situ Raman spectra show that W2C can suppress the excessive oxidation of the active site during the OER process, and the existence of core-shell structure also protects the W2C substrate. The stable and efficient catalytic performance of Co-W2C is attributed to the common advantages of structural and interface manipulation.
Collapse
Affiliation(s)
- Yu Dai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong Chuan Fu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Zuo P, Ji X, Lu J, Chai Y, Jiao W, Wang R. N, P co-doped Ni/Mo-based multicomponent electrocatalysts in situ decorated on Ni foam for overall water splitting. J Colloid Interface Sci 2023; 645:895-905. [PMID: 37178566 DOI: 10.1016/j.jcis.2023.04.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Developing the robust non-precious metal bifunctional electrocatalyst is highly imperative for the hydrogen evolution from overall water splitting. Herein, a Ni foam (NF)-supported ternary Ni/Mo bimetallic complex (Ni/Mo-TEC@NF), hierarchically constructed by coupling the in-situ formed MoNi4 alloys and Ni2Mo3O8 with Ni3Mo3C on NF, has been developed through a facile method involving the in-situ hydrothermal growth of the Ni-Mo oxides/polydopamine (NiMoOx/PDA) complex on NF and a subsequent annealing in a reduction atmosphere. Synchronously, N and P atoms are co-doped into Ni/Mo-TEC during the annealing procedure using phosphomolybdic acid and PDA raw materials as P and N sources, respectively. The resultant N, P-Ni/Mo-TEC@NF shows outstanding electrocatalytic activities and tremendous stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), due to the multiple heterojunction effect-promoted electron transfer, the large number of exposed active sites, and the modulated electronic structure by the N and P co-doping. It only needs a low overpotential of 22 mV to afford the current density of 10 mA·cm-2 for HER in alkaline electrolyte. More importantly, as the anode and cathode, it requires only 1.59 and 1.65 V to achieve 50 and 100 mA·cm-2 for overall water splitting, respectively, comparable to the benchmark Pt/C@NF//RuO2@NF couple. This work could spur the search for economical and efficient electrodes by in situ constructing multiple bimetallic components on 3D conductive substrates for practical hydrogen generation.
Collapse
Affiliation(s)
- Peng Zuo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Xujing Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Jiawei Lu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Yating Chai
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Weizhou Jiao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Ruixin Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
4
|
Zhao X, Liu K, Guo F, He Z, Zhang L, Lei S, Li H, Cheng Y, Yang L. meta-Position synergistic effect induced by Ni-Mo co-doped WSe 2 to enhance the hydrogen evolution reaction. Dalton Trans 2022; 51:11758-11767. [PMID: 35857033 DOI: 10.1039/d2dt01350a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal dichalcogenides have been the most attractive two-dimensional layered materials for electrocatalytic hydrogen evolution due to their unique structure and multi-phase electronic states. However, the enhancement of the WSe2 electrocatalytic hydrogen evolution reaction (HER) performance by bimetal co-doping has been rarely reported. Herein, the NiMo-WSe2 catalyst has been synthesized by a one-step hydrothermal reaction, with lower overpotentials of 177 and 188 mV at a current density of 10 mA cm-2 in 0.5 M H2SO4 and 1 M KOH, respectively. The large specific surface area and thinner edge morphology provide more active sites for hydrogen production, thereby significantly improving the charge transfer kinetics. Density functional theory calculation results show that under acidic conditions the ΔGH* values of NiMo-WSe2 with different structures and hydrogen adsorption sites are also different, when the hydrogen adsorption site was located at the top of the Se-Ni bond, the meta NiMo-WSe2 has a ΔGH* value (-0.04 eV) that is closest to 0. Meanwhile, NiMo-WSe2 (meta) also has a minimum of ΔGH* under alkaline conditions. DOS confirmed that Ni doping has a large impact on the electronic states at the WSe2 Fermi level, while NiMo co-doping greatly reduces the potential energy barrier of the HER reaction, jointly increasing the current density, and thus improving the HER performance.
Collapse
Affiliation(s)
- Xinya Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, China
| | - Kankan Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, China
| | - Fengbo Guo
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, China
| | - Zeyang He
- Department of Environment and Geography, University of York, Heslington, York, YO10 5DD, UK
| | - Lixin Zhang
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, China.,School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
| | - Shiwen Lei
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030000, China
| | - Huadong Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Yongkang Cheng
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Lei Yang
- Shenzhen HUASUAN Technology Co., Ltd, 4168 Liuxian Ave., Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
5
|
Wang S, Zhang T, Zhu X, Zu S, Xie Z, Lu X, Zhang M, Song L, Jin Y. Metal–Organic Frameworks for Electrocatalytic Sensing of Hydrogen Peroxide. Molecules 2022; 27:molecules27144571. [PMID: 35889442 PMCID: PMC9316108 DOI: 10.3390/molecules27144571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/24/2023] Open
Abstract
The electrochemical detection of hydrogen peroxide (H2O2) has become more and more important in industrial production, daily life, biological process, green energy chemistry, and other fields (especially for the detection of low concentration of H2O2). Metal organic frameworks (MOFs) are promising candidates to replace the established H2O2 sensors based on precious metals or enzymes. This review summarizes recent advances in MOF-based H2O2 electrochemical sensors, including conductive MOFs, MOFs with chemical modifications, MOFs-composites, and MOF derivatives. Finally, the challenges and prospects for the optimization and design of H2O2 electrochemical sensors with ultra-low detection limit and long-life are presented.
Collapse
|
6
|
Feng D, Zhang S, Tong Y, Dong X. Dual-anions engineering of bimetallic oxides as highly active electrocatalyst for boosted overall water splitting. J Colloid Interface Sci 2022; 623:467-475. [PMID: 35597016 DOI: 10.1016/j.jcis.2022.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/20/2023]
Abstract
Bimetallic oxides have unique advantages in driving both oxygen and hydrogen evolution reactions (OER/HER). Surface engineering of bimetallic oxides is a promising way to boost the catalytic activity by the regulation of electronic structure and surface property. Herein, a dual P, S-anions modification strategy is developed to optimize the catalytic performance of CoMoO4 nanowire arrays. The formations of CoP and Co3S4 species on the CoMoO4 surface bring heterojunction interfaces for more catalytic active sites and strong electronic interaction for faster interfacial charge transfer. Benefiting from these advantages, the P, S-CoMoO4 catalyst on nickel foam (NF) delivers excellent catalytic activity and stability. The overpotentials at 10 mA cm-2 of P, S-CoMoO4/NF for HER are just 31 mV in acid media and 58 mV in alkaline media, respectively. In addition, by assembling the P, S-CoMoO4/NF as bifunctional electrodes for overall water splitting, the electrolyzer exhibits a voltage of as low as 1.66 V at a current density of 50 mA cm-2. This work put forward a new avenue for the development of advanced bifunctional electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Dongmei Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shishen Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yun Tong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaoping Dong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Liu Y, Tang W, Zhang G, Chen W, Chen Q, Xiao C, Xie S, Qiu Y. A 3D binder-free AgNWs@NiMo/PU electrode for efficient hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Dhandapani B, Jagannathan M, AlSalhi MS, Aljaafreh MJ, Prasad S. N-doped carbon embedded Ni3S2 electrocatalyst material towards efficient hydrogen evolution reaction in broad pH range. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Guo L, Liu Y, Teng X, Niu Y, Gong S, Chen Z. Self-Supported Vanadium Carbide by an Electropolymerization-Assisted Method for Efficient Hydrogen Production. CHEMSUSCHEM 2020; 13:3671-3678. [PMID: 32352230 DOI: 10.1002/cssc.202000769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Indexed: 05/28/2023]
Abstract
Exploring efficient electrodes toward the hydrogen evolution reaction (HER) remains a great challenge for large-scale hydrogen production. Owing to its high earth abundance, low electrical resistivity, and small density, vanadium carbide (VC) is a promising HER electrode candidate but has been rarely explored. In this work, VC nanoparticles encased in nitrogen-doped carbon matrix on carbon cloth (VC@NC/CC) were prepared as a binder-free HER cathode through electropolymerization followed by carbothermal reduction under argon. In the first step of pyrrole electropolymerization, the VO4 3- anions, serving as both vanadium source and supporting electrolyte, were homogeneously incorporated in the positively charged polypyrrole (PPy) framework through coulombic interaction. The electropolymerization was effective for preparation of binder-free metal carbide materials with various polymer monomers as carbon source, which was favorable for the high performance of metal carbide electrodes. During the pyrolysis process, the polymeric hybrids were converted to VC nanoparticles and entrapped in the PPy-derived N-doped carbon matrix. The optimized VC@NC/CC electrode exhibited high catalytic activity and durability in both acidic and alkaline media. The use of VC for efficient HER is remarkable, and such a convenient and versatile electropolymerization-assisted method is appealing for the fabrication of industrially scalable large-area VC electrodes for efficient hydrogen production.
Collapse
Affiliation(s)
- Lixia Guo
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Yangyang Liu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Xue Teng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Yanli Niu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Shuaiqi Gong
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Zuofeng Chen
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
- College of Chemistry and Materials Science, Longyan University, Longyan, Fujian, 364012, P.R. China
| |
Collapse
|
10
|
Huo S, Yang S, Niu Q, Song Z, Yang F, Song L. Fabrication of Porous Configurated Ni
2
P/Ni Foam Catalyst and its Boosted Properties for pH‐universal Hydrogen Evolution Reaction and Efficient Nitrate Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Siyue Huo
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Shuqin Yang
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Qianqian Niu
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Zimo Song
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Fan Yang
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Laizhou Song
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| |
Collapse
|
11
|
Yang Q, Qiu R, Ma X, Hou R, Sun K. Surface reconstruction and the effect of Ni-modification on the selective hydrogenation of 1,3-butadiene over Mo2C-based catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00402b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the current study, Mo2C, NiMo2C, H–Mo2C and H–NiMo2C were synthesized to understand the effects of Ni modification and surface reconstruction.
Collapse
Affiliation(s)
- Qiuchen Yang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- People's Republic of China
| | - Rui Qiu
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- People's Republic of China
| | - Xixi Ma
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- People's Republic of China
| | - Ruijun Hou
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- People's Republic of China
| | - Kening Sun
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- People's Republic of China
| |
Collapse
|
12
|
Li Y, Pascal K, Jin XJ. Ni–Mo modified metal–organic frameworks for high-performance supercapacitance and enzymeless H 2O 2 detection. CrystEngComm 2020. [DOI: 10.1039/d0ce00666a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The growth process for A(B)-NixMoy-MOFs@AAC hybrids.
Collapse
Affiliation(s)
- Yue Li
- Beijing Forestry University
- Beijing
- China
| | - Kamdem Pascal
- School of Packaging Michigan State University
- East Lansing
- USA
| | | |
Collapse
|
13
|
Qiu L, Jiang L, Ye Z, Liu Y, Cen T, Peng X, Yuan D. Phosphorus-doped Co3Mo3C/Co/CNFs hybrid: A remarkable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Digraskar R, Sapner VS, Mali SM, Narwade SS, Ghule AV, Sathe BR. CZTS Decorated on Graphene Oxide as an Efficient Electrocatalyst for High-Performance Hydrogen Evolution Reaction. ACS OMEGA 2019; 4:7650-7657. [PMID: 31459857 PMCID: PMC6648106 DOI: 10.1021/acsomega.8b03587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/06/2019] [Indexed: 05/25/2023]
Abstract
Cu2ZnSnS4 (CZTS) was synthesized by the sonochemical method using 2-methoxyethanol as the solvent and subsequently decorated onto graphene oxide (GO synthesized by the modified Hummers' method) using two different approaches such as in situ growth and ex situ synthesis followed by deposition. Preliminary characterizations indicated that the synthesized CZTS belongs to the kesterite structure with a sphere-like morphology. The in situ-synthesized CZTS/GO (I-CZTS/GO) composite is used as an efficient electrocatalyst for hydrogen evolution reaction (HER) which revealed superior electrocatalytic activity with a reduced overpotential (39.3 mV at 2 mA cm-2), Tafel slope (70 mV dec-1), a larger exchange current density of 908 mA cm-2, and charge transfer resistance (5 Ω), significantly different from pure CZTS. Besides, the I-CZTS/GO composite exhibits highest HER performance with high current stability of which shows no noticeable degradation after i-t amperometry. The catalytic activity demonstrates that the I-CZTS/GO composite could be a promising electrocatalyst in hydrogen production from their cooperative interactions.
Collapse
Affiliation(s)
- Renuka
V. Digraskar
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Vijay S. Sapner
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Shivsharan M. Mali
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Shankar S. Narwade
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| | - Anil V. Ghule
- Department
of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Bhaskar R. Sathe
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, Maharashtra, India
| |
Collapse
|
15
|
Xue JY, Li FL, Zhao ZY, Li C, Ni CY, Gu HW, Braunstein P, Huang XQ, Lang JP. A hierarchically-assembled Fe–MoS2/Ni3S2/nickel foam electrocatalyst for efficient water splitting. Dalton Trans 2019; 48:12186-12192. [DOI: 10.1039/c9dt02201e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hierarchically-assembled Fe–MoS2/Ni3S2/NF demonstrates excellent HER, OER and full water splitting catalytic performances in an alkaline electrolyte.
Collapse
Affiliation(s)
- Jiang-Yan Xue
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Fei-Long Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Zhong-Yin Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Cong Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Chun-Yan Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Hong-Wei Gu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS)
- Université de Strasbourg
- 67081 Strasbourg
- France
| | - Xiao-Qing Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| |
Collapse
|
16
|
He W, Wei W, Wen B, Chen D, Zhang J, Jiang Y, Dong G, Meng Y, Zhou G, Liu JM, Kempa K, Gao J. Lamellar NiMoCo@CuS enabling electrocatalytic activity and stability for hydrogen evolution. Chem Commun (Camb) 2019; 55:10555-10558. [DOI: 10.1039/c9cc04934g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate a NiMoCo@CuS/NF catalyst for the high-efficiency hydrogen evolution reaction, simultaneously with a significantly enhanced stability.
Collapse
|
17
|
Guo L, Ji L, Wang J, Zuo S, Chen Z. Walnut-like Transition Metal Carbides with Three-Dimensional Networks by a Versatile Electropolymerization-Assisted Method for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36824-36833. [PMID: 30295455 DOI: 10.1021/acsami.8b07127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mo2C@NPC (N,P-doped carbon) electrocatalysts are developed on carbon cloth (CC) as binder-free cathodes for efficient hydrogen evolution through a facile route of electropolymerization followed by pyrolysis. Electropolymerization of pyrrole to form polypyrrole occurs with the homogeneous incorporation of PMo12, driven by Coulombic force between the positively charged polymer backbone and PMo12 anions. This electrochemical synthesis is easily scaled up, requiring neither complex instrumentation nor an intentionally added electrolyte (PMo12 also acts as an electrolyte). After pyrolysis, the resultant Mo2C@NPC/CC electrode exhibits a unique interconnected walnut-like porous structure, which ensures strong adhesion between the active material and the substrate and favors electrolyte penetration into the electrocatalyst. This method is effective with other monomers such as aniline and is readily extended to fabricate other metal carbide electrodes such as WC@NPC/CC. These carbide electrodes exhibit high catalytic performance for hydrogen production, for example, WC@NPC/CC can deliver an unprecedented current density of 600 mA cm-2 at an overpotential of only 200 mV either in an acidic or an alkaline solution. Considering the simplicity, scalability, and versatility of the synthetic method, the unique electrode structure, and the excellent catalysis performance, this study opens up new avenues for the design of various novel binder-free metal carbide cathodes based on electropolymerization.
Collapse
Affiliation(s)
- Lixia Guo
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Lvlv Ji
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Jianying Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Shangshang Zuo
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Zuofeng Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| |
Collapse
|