1
|
Amarloo F, Zhiani R, Motavalizadehkakhky A, Hosseiny M. Synthesis of new DFNS/ZnTiO 3 nanoparticles as a nanocatalyst for the reaction of quinazoline-2, 4(1H, 3H)-dione with CO 2. Sci Rep 2025; 15:11648. [PMID: 40185831 PMCID: PMC11971304 DOI: 10.1038/s41598-025-95930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
The conversion of CO2 into valuable materials through multicomponent reactions in the presence of nanocatalysts with high surface area and suitable efficiency has garnered significant attention. Herein, this study is focused on the synthesis and catalytic activity of DFNS-supported zinc titanate nanoparticles for the conversion of CO2 into quinazoline-2,4(1H,3H)-dione derivatives. ZnTiO3 was prepared by a sol-gel process, presenting a novel dandelion-like morphology that allows a significant increase in the surface area and catalytic activity. Detailed characterizations such as EDX for elemental composition, XRD for crystallinity, TEM and SEM for morphology, TGA for thermal stability, and FT-IR for bonding characteristics confirmed the excellent integration of ZnTiO3 into the DFNS. Under optimized conditions, our catalytic protocol achieved a maximum yield of 92% at 70 °C over 3 h in DMF solvent. Systematic optimization of reaction parameters such as solvent type and nanocatalyst loading showed the remarkable efficiency of this nanocatalyst under mild conditions, hence proving to be a strong alternative in the practices of green synthesis. Further tests for heterogeneity confirmed the effective operation of DFNS/ZnTiO3 as an enduring heterogeneous nanocatalyst, recyclability tests showing an 87% efficiency retention after ten cycles. These findings confirm the economic and ecological viability of the nanocatalyst; hence, DFNS/ZnTiO3 represents a versatile platform toward the advancement of CO2 conversion technologies into valued chemical precursors.
Collapse
Affiliation(s)
- Fatemeh Amarloo
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| | | | - Malihesadat Hosseiny
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
2
|
Kovela S, Karad S, Tatipudi VVG, Arumugam K, Somwanshi AV, Muthukumar M, Mathur A, Tester R. Synthesis of diversely substituted quinazoline-2,4(1 H,3 H)-diones by cyclization of tert-butyl (2-cyanoaryl)carbamates. Org Biomol Chem 2024; 22:6495-6499. [PMID: 39082801 DOI: 10.1039/d4ob00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The synthesis of diversely substituted quinazoline-2,4(1H,3H)-diones by cyclization of tert-butyl (2-cyanoaryl)carbamates using readily accessible Boc protected o-amino nitriles is reported. The reaction proceeds smoothly at room temperature using 1 equiv. of H2O2 under basic conditions. This reaction is compatible with a variety of aromatic/heteroaromatic substrates with different functional groups. This strategy can be utilized for the simplified synthesis of goshuyuamide II and an alkaloid isolated from Zanthoxylum arborescens in good yields. This method was also applied to the synthesis of quinazoline-2,4(1H,3H)-diones that are precursors of medicinally important compounds: alfuzosin, terazosin, prazosin, IAAP, doxazosin, FK 366 (zenarestat) and KF31327.
Collapse
Affiliation(s)
- Satish Kovela
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - Somnath Karad
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - V V Ganesh Tatipudi
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - Karthikeyan Arumugam
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - Atul Vijay Somwanshi
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - M Muthukumar
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey, 08540, USA
| | - Richland Tester
- Department of Discovery Synthesis, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey, 08540, USA
| |
Collapse
|
3
|
Gheidari D, Mehrdad M, Maleki S. Recent Advances in Synthesis of Quinazoline‐2,4(
1H,3H
)‐diones: Versatile Building Blocks in
N
‐ Heterocyclic Compounds. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Davood Gheidari
- Department of Chemistry, Faculty of Science University of Guilan Rasht Iran
| | - Morteza Mehrdad
- Department of Chemistry, Faculty of Science University of Guilan Rasht Iran
| | - Saloomeh Maleki
- Department of Chemistry, Faculty of Science University of Shahrood Iran
| |
Collapse
|
4
|
Weng S, Dong J, Ma J, Bai J, Liu F, Liu M. Biocompatible anions-derived ionic liquids a sustainable media for CO2 conversion into quinazoline-2,4(1H,3H)-diones under additive-free conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Phatake VV, Gokhale TA, Bhanage BM. [TBDH][HFIP] ionic liquid catalyzed synthesis of quinazoline-2,4(1H,3H)-diones in the presence of ambient temperature and pressure. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Mechanisms and reaction conditions of CO2 with o-aminobenzonitrile for the synthesis of quinazoline-2,4-dione. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Wang Z, Li D, Chen S, Hu J, Gong Y, Guo Y, Deng T. Ionic liquid [DBUH][BO2]: an excellent catalyst for chemical fixation of CO 2 under mild conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj04631k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The basic IL [DBUH][BO2] was easily synthesized and used for the chemical fixation of CO2 at atmospheric pressure and room temperature.
Collapse
Affiliation(s)
- Zheng Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Da Li
- Tianjin Colouroad Coatings & Chemicals Co., Ltd
- Tianjin, 300457
- China
| | - Shangqing Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Jiayin Hu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Yanxi Gong
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Yafei Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Tianlong Deng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| |
Collapse
|
8
|
Fixation of CO2 in structurally diverse quinazoline-2,4(1H,3H)-diones under ambient conditions. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Mu X, Han L, Liu T. How and Why a Protic Ionic Liquid Efficiently Catalyzes Chemical Fixation of CO2 to Quinazoline-2,4-(1H,3H)-diones: Electrostatically Controlled Reactivity. J Phys Chem A 2019; 123:9394-9402. [DOI: 10.1021/acs.jpca.9b07838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xueli Mu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China
| | - Lingli Han
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China
| | - Tao Liu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| |
Collapse
|
10
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C−N Bond Forming Reactions of Amines with CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
11
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C-N Bond Forming Reactions of Amines with CO 2. Angew Chem Int Ed Engl 2019; 59:1002-1017. [PMID: 31364789 DOI: 10.1002/anie.201906942] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Organocatalysts promote a range of C-N bond forming reactions of amines with CO2 . Herein, we review these reactions and attempt to identify the unifying features of the catalysts that allows them to promote a multitude of seemingly unrelated reactions. Analysis of the literature shows that these reactions predominantly proceed by carbamate salt formation in the form [BaseH][RR'NCOO]. The anion of the carbamate salt acts as a nucleophile in hydrosilane reductions of CO2 , internal cyclization reactions or after dehydration as an electrophile in the synthesis of urea derivatives. The reactions are enhanced by polar aprotic solvents and can be either promoted or hindered by H-bonding interactions. The predominant role of all types of organic and salt catalysts (including ionic liquids, ILs) is the stabilization of the carbamate salt, mostly by acting as a base. Catalytic enhancement depends on the combination of the amine, the base strength, the solvent, steric factors, ion pairing and H-bonding. A linear relationship between the base strength and the reaction yield has been demonstrated with IL catalysts in the synthesis of formamides and quinazoline-2,4-diones. The role of organocatalysts in the reactions indicates that all bases of sufficient strength should be able to catalyze the reactions. However, a physical limit to the extent of a purely base catalyzed reaction mechanism should exist, which needs to be identified, understood and overcome by synergistic or alternative methods.
Collapse
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
12
|
Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts 2019. [DOI: 10.3390/catal9060511] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon dioxide produced by human activities is one of the main contributions responsible for the greenhouse effect, which is modifying the Earth’s climate. Therefore, post-combustion CO2 capture and its conversion into high value-added chemicals are integral parts of today’s green industry. On the other hand, carbon dioxide is a ubiquitous, cheap, abundant, non-toxic, non-flammable and renewable C1 source. Among CO2 usages, this review aims to summarize and discuss the advances in the reaction of CO2, in the synthesis of cyclic carbonates, carbamates, and ureas appeared in the literature since 2017.
Collapse
|
13
|
Chen S, Wang Z, Hu J, Guo Y, Deng T. Efficient transformation of CO2 into quinazoline-2,4(1H,3H)-diones at room temperature catalyzed by a ZnI2/NEt3 system. NEW J CHEM 2019. [DOI: 10.1039/c9nj04302k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The readily available ZnI2/NEt3 system promotes the efficient transformation of CO2 and 2-aminobenzonitriles into quinazoline-2,4(1H,3H)-diones at room temperature and low CO2 pressure.
Collapse
Affiliation(s)
- Shangqing Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Zheng Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Jiayin Hu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Yafei Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Tianlong Deng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| |
Collapse
|