1
|
Song S, Xia M, Feng Y, Zhang X. Synergistic Coupling Effect and Anionic Modulation of CoFe LDH@MXene for Triggered and Sustained Alkaline Water/Seawater Electrolysis. Chem Asian J 2025; 20:e202401295. [PMID: 39552333 DOI: 10.1002/asia.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
The application of seawater splitting is crucial for hydrogen production; therefore, efficient electrocatalysts are necessary to prevent chlorine evolution and severe corrosion. A synergistic method is employed on CoFe LDH by integrating a conductive Ti3C2Tx MXene layer and subsequently applying anionic modulation. Robust metal-substrate interaction along with subsequent phosphidation facilitates efficient electron transfer and optimises the electronic structure of Co and Fe sites. The CoFe-P-1000@Ti3C2Tx/CC demonstrates commendable electrochemical performance, requiring overpotentials of 106.6 mV and 276 mV for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 10 mA cm-2 in 1 M KOH electrolyte, while 292 mV is necessary for OER in a simulated seawater electrolyte (1 M KOH+0.5 M NaCl). Furthermore, the CoFe-P-1000@Ti3C2Tx/CC exhibits an encouraging cell voltage of 1.59 V (j=10 mA cm-2) for comprehensive alkaline seawater splitting, maintaining exceptional stability for over 50 hours.
Collapse
Affiliation(s)
- Shixue Song
- Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin, 300400, P. R. China
| | - Minglong Xia
- Jiangsu Zenergy Battery Technologies Group Co., Ltd
| | - Yi Feng
- Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin, 300400, P. R. China
| | - Xiaojie Zhang
- Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin, 300400, P. R. China
| |
Collapse
|
2
|
Liu Z, Dai Y, Han X, Hou C, Li K, Li Y, Wang H, Zhang Q. CoFe hydroxide towards CoP 2-FeP 4 heterojunction for efficient and long-term stable water oxidation. J Colloid Interface Sci 2024; 676:937-946. [PMID: 39068838 DOI: 10.1016/j.jcis.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Electrochemical water splitting stands out as a promising avenue for green hydrogen production, yet its efficiency is fundamentally governed by the oxygen evolution reaction (OER). In this work, we investigated the growth mechanism of CoFe hydroxide formed by in situ self-corrosion of iron foam for the first time and the significant influence of dissolved oxygen in the immersion solution on this process. Based on this, the CoP2-FeP4/IF heterostructure catalytic electrode demonstrates exceptional OER activity in a 1 M KOH electrolyte, with an overpotential of only 253 ± 4 mV (@10 mA cm-2), along with durability exceeding 1000 h. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons, optimizing the free energy of adsorbed intermediate during the water oxidation process. This research highlights the importance of integrating self-corroding in-situ growth with interface engineering techniques to develop efficient water splitting materials.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Liu S, Yang Y, Zhong M, Li S, Shi S, Xiao W, Wang S, Chen C. Constructing an efficient electrocatalyst for water oxidation: an Fe-doped CoO/Co catalyst enabled by in situ MOF growth and a solvent-free strategy. Dalton Trans 2023; 52:15928-15934. [PMID: 37840460 DOI: 10.1039/d3dt02699j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The development of non-precious metal electrocatalysts with high activity for the oxygen evolution reaction (OER) is a crucial and challenging task. In this work, we proposed a solvent-free in situ metal-organic framework (MOF) growth strategy for the fabrication of an Fe-doped CoO/Co electrocatalyst. This approach not only partially granted the MOF's porous structure to the catalyst but also resulted in a tighter combination between the Co metal and CoO, thereby enhancing its electrical conductivity. Furthermore, this method enabled the Fe species to be more uniformly dispersed on CoO/Co, which significantly exposed more active sites for efficient electrocatalysis. The entire synthesis process was solvent-free, except for a small amount of water and ethanol used during catalyst washing. The as-synthesized Fe-CoO/Co electrocatalyst exhibited superior OER activity on a glass carbon electrode, with η = 276 mV at a current density of 10 mA cm-2, even higher than that of the commercial precious IrO2/C catalyst. Additionally, it was also extended to prepare a Ni-doped CoO/Co electrocatalyst by the same procedure with satisfactory OER performance. This work presents a new preparation approach for MOF-derived catalysts with potential applications in energy conversion and beyond.
Collapse
Affiliation(s)
- Sanmei Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China.
| | - Yanping Yang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China.
| | - Minli Zhong
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China.
| | - Shengchen Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China.
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China.
| | - Weimin Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China.
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China.
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P.R. China.
| |
Collapse
|
4
|
Zhuang S, Li B, Wang X. Engineering the electronic structure of high performance FeCo bimetallic cathode catalysts for microbial fuel cell application in treating wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114542. [PMID: 36228689 DOI: 10.1016/j.envres.2022.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The development of high-performance, strong-durability and low-cost cathode catalysts toward oxygen reduction reaction (ORR) is of great significance for microbial fuel cells (MFCs). In this study, a series of bimetallic catalysts were synthesized by pyrolyzing a mixture of g-C3N4 and Fe, Co-tannic complex with various Fe/Co atomic ratios. The initial Fe/Co atomic ratio (3.5:0.5, 3:1, 2:2, 1:3) could regulate the electronic state, which effectively promoted the intrinsic electrocatalytic ORR activity. The alloy metal particles and metal-Nx sites presented on the catalyst surface. In addition, N-doped carbon interconnected network consisting of graphene-like and bamboo-like carbon nanotube structure derived from g-C3N4 provided more accessible active sites. The resultant Fe3Co1 catalyst calcined at 700 °C (Fe3Co1-700) exhibited high catalytic performance in neutral electrolyte with a half-wave potential of 0.661 V, exceeding that of the commercial Pt/C (0.6 V). As expected, the single chamber microbial fuel cell (SCMFC) with 1 mg/cm2 loading of Fe3Co1-700 catalyst as the cathode catalyst afforded a maximum power density of 1425 mW/m2, which was 10.5% higher than commercial Pt/C catalyst with the same loading (1290 mW/m2) and comparable to the Pt/C catalyst with 2.5 times higher loading ( 1430 mW/m2). Additionally, the Fe3Co1-700 also displayed better long-term stability over 1100 h than the Pt/C. This work provides an effective strategy for regulating the surface electronic state in the bimetallic electro-catalyst.
Collapse
Affiliation(s)
- Shiguang Zhuang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Baitao Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Xiujun Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
5
|
El-Jemni MA, Abdel-Samad HS, AlKordi MH, Hassan HH. Normalization of the EOR catalytic efficiency measurements based on RRDE study for simply fabricated cost-effective Co/graphite electrode for DAEFCs. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Liang C, Wang K, Xu F, Wang Y, Li S, Qu K, Lei L, Zhuang L, Xu Z. Anchoring Ni/NiO heterojunction on freestanding carbon nanofibers for efficient electrochemical water oxidation. J Colloid Interface Sci 2022; 626:995-1002. [PMID: 35839680 DOI: 10.1016/j.jcis.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 10/31/2022]
Abstract
Rational design of low-cost and efficient electrocatalyst for the anodic oxygen evolution reaction (OER) to replace noble-metal-based catalysts is greatly desired for the large-scale application of water electrocatalysis. And compared with the conventional powdery catalysts, the freestanding electrode architecture is more attractive owing to the enhanced kinetics and stability. In this work, we report an electrospinning-carbonization-post oxidation strategy to develop the freestanding N-doped carbon nanofibers anchored with Ni/NiO nanoparticles (denoted as Ni/NiO-NCNFs) as efficient OER electrocatalyst. In the synthesized Ni/NiO-NCNFs, the conductive ultrathin carbon layer could promote electron transfer and thus improve the electrocatalytic activity. Meanwhile, the ratio between Ni and NiO could be regulated by tuning the oxidation duration, so as to optimize the adsorption energy of intermediates and improve the OER activity. The Ni/NiO-NCNFs prepared with the oxidation time of 3 h exhibit a promising OER activity and long-term operation durability in 0.1 M KOH solution, requiring an overpotential as small as 153 mV to achieve a current density of 10 mA cm-2. Its overpotential is far lower than that of the reported OER catalysts. This work offers an efficient pathway to develop low-cost and highly active freestanding transitional metal-based OER electrocatalyst for potential renewable electrochemical energy conversion.
Collapse
Affiliation(s)
- Chen Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Keyu Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fang Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shiyi Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Qu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linfeng Lei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linzhou Zhuang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Xu Z, Zuo W, Mou Q, Cheng G, Zheng H, Zhao P. A yolk-shell structure construction for metal-organic frameworks toward an enhanced electrochemical water splitting catalysis. Dalton Trans 2022; 51:10298-10306. [PMID: 35749061 DOI: 10.1039/d2dt01111e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NiFe-based transition metal catalysts are widely used in electrocatalysis, especially in the field of water splitting, due to their excellent electrochemical performance. Herein, a simple method was designed to synthesize a Ni MOF based on nickel foam and it was modified with Fe. After the introduction of Fe, the resulting material exhibits an obvious yolk-shell structure, which greatly increases the specific surface area and facilitates the construction of active sites. At the same time, the synergy between Ni and Fe is conducive to optimizing the electronic structure and effectively improving the poor stability of the MOF. As a result, the synthesized Ni MOF-Fe-2 only needs an overpotential of 229 mV to achieve the OER at a current density of 10 mA cm-2, which is better than most reported transition metal-based electrocatalysts. To our surprise, it showed extraordinary stability under the voltage used for water splitting.
Collapse
Affiliation(s)
- Zhenhang Xu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei, 430072, P. R. China
| | - Wei Zuo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei, 430072, P. R. China
| | - Qiuxiang Mou
- Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei, 430072, P. R. China
| | - Huaming Zheng
- School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430073 Hubei, P.R. China.
| | - Pingping Zhao
- Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| |
Collapse
|
8
|
Pan C, Yang G, Yang H, Wang L, Jiang J, Zhang Y, Wu F. Facile fabrication of steam-exploded poplar loaded with non-metal-doped Ni-Fe nanoparticles: catalytic activities in 4-nitrophenol reduction and electrocatalytic reaction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
9
|
Jiang M, Hu X, Tan P, Pan J. Highly clean and efficient iron phosphates modified by Ru nanocrystals for water oxidation. Dalton Trans 2022; 51:6778-6786. [PMID: 35420102 DOI: 10.1039/d2dt00546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimizing the architecture of non-polluting, highly efficient, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is extremely crucial for accelerating the application of water splitting. Herein, a highly green and active OER electrocatalyst composed of Ru nanocrystal modified iron-rich phosphates is successfully developed via a hydrothermal and post-annealing approach. The eco-friendly phosphorus source of lecithin is employed to fabricate transition metal phosphates for the first time, which avoids the use of toxic and dangerous phosphorus sources. Meanwhile, it is found that Ru nanocrystals could form heterostructures with iron phosphates and induce conversion to iron-rich phosphates, which would greatly enhance the conductivity of the substrate and elevate the catalytic activity. As a result, overpotentials of only 250 mV and 290 mV are required to deliver 10 and 100 mA cm-2 using this typical electrocatalyst. Also, the j-t curve shows no distinct variations in current over 45 h at a constant overpotential of 334 mV, indicating the outstanding activity and durability of the catalyst. Furthermore, nickel/cobalt-rich phosphates and phosphides were also acquired using similar experimental procedures, manifesting the wide applicability of Ru actuation. Hence, this work offers a convenient and scalable method for designing highly efficient, green, clean, and cost-effective electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory for Powder Metallurgy, Central South University, Lushan South Street 932, Changsha 410083, China.
| | - Xiaoyue Hu
- State Key Laboratory for Powder Metallurgy, Central South University, Lushan South Street 932, Changsha 410083, China.
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy, Central South University, Lushan South Street 932, Changsha 410083, China.
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University, Lushan South Street 932, Changsha 410083, China.
| |
Collapse
|
10
|
Effect of Plating Variables on Oxygen Evolution Reaction of Ni–Zn–Fe Electrodes for Alkaline Water Electrolysis. Catalysts 2022. [DOI: 10.3390/catal12030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this study, we investigated the oxygen evolution reaction (OER) characteristics of Ni–Zn–Fe electrodes by varying plating current density and Ni:Fe ratio in a plating bath. The activity of the OER increased up to the plating current density of 160 mA/cm2, as the Fe content of the deposited electrode increased and electrochemical surface area (ECSA) increased after Zn dealloying. However, for the plated electrode with higher than 160 mA/cm2 of current density, the change in composition caused by underpotential deposition led to decreased activity due to decreasing Fe content and diminishing Zn dealloying. Moreover, when the Ni:Fe ratio in the plating bath was varied, outstanding OER activity was observed at Ni:Fe = 2:1. When the Fe content of the bath increased beyond this ratio, Fe could not restrain Ni oxidation and formed Fe oxides in OER reaction, and oxygen vacancy decreased. These caused a degradation of the OER activity.
Collapse
|
11
|
Fu R, Jiao Q, Feng X, Zhu H, Yang C, Feng C, Li H, Zhang Y, Shi D, Wu Q, Zhao Y. Metal - organic frameworks derived Ni 5P 4/NC@CoFeP/NC composites for highly efficient oxygen evolution reaction. J Colloid Interface Sci 2022; 617:585-593. [PMID: 35303642 DOI: 10.1016/j.jcis.2022.02.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 01/06/2023]
Abstract
As an efficient non-precious metal catalyst for the oxygen evolution reaction (OER), phosphides suffer from poor electrical conductivity, so it is still a challenge to reasonably design their structures to further improve their conductivity and OER performances. Here, we present a novel Ni5P4/N-doped carbon@CoFeP/N-doped carbon composite (Ni5P4/NC@CoFeP/NC) as electrocatalysts for OER. This elaborate structure consists of Ni5P4/NC derived from Ni-MOF and CoFeP/NC derived from CoFe-Prussian blue analog MOF (Co-Fe PBA). The cube-like CoFeP/NC are scattered and uniformly coated on the sheet of Ni5P4/NC flowers. Among them, NC can enhance the conductivity of phosphides, while CoFeP/NC can increase the electrochemical active area, which benefit the properties of Ni5P4/NC@CoFeP/NC. Notably, the Ni5P4/NC@CoFeP/NC catalyst possesses outstanding OER performances with a low overpotential of 260 and 303 mV at a current density of 10 and 100 mA·cm-2, an ultra-low Tafel slope of 31.1 mV·dec-1 and excellent stability in 1 M KOH. XPS analysis shows that proper chemical composition promotes the oxidation of transition metal species and the chemisorption of OH-, thus accelerating the OER kinetics. Therefore, this work provides a hopeful method for designing and preparing transition metal phosphide/carbon composite as OER electrocatalysts.
Collapse
Affiliation(s)
- Ruru Fu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; School of Materials and Environment, Beijing Institute of Technology, Zhuhai, Guangdong 519085, PR China
| | - Xueting Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huanhuan Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yaoyuan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Daxin Shi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qin Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
12
|
Gong Y, Yao J, Wang P, Li Z, Zhou H, Xu C. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Li Q, Liu X, Zheng Z, Chen G, Ma R, Wan H. Hierarchical NiFeV Hydroxide Nanotubes: Synthesis, Topotactic Transformation and Electrocatalysis towards Oxygen Evolution Reaction. Dalton Trans 2022; 51:11098-11107. [DOI: 10.1039/d2dt01235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic overall water splitting is a sustainable approach to realizing the clean production of hydrogen energy, however, is mainly hindered by the sluggish kinetics of oxygen evolution reaction (OER) half...
Collapse
|
14
|
Nie Z, Liu T, Chen Y, Liu P, Zhang Y, Fan Z, He H, Chen S, Zhang F. In-situ growing low-crystalline Co9S8Ni3S2 nanohybrid on carbon cloth as a highly active and ultrastable electrode for the oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Ying J, Wang H. Strategies for Developing Transition Metal Phosphides in Electrochemical Water Splitting. Front Chem 2021; 9:700020. [PMID: 34805087 PMCID: PMC8595924 DOI: 10.3389/fchem.2021.700020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Electrochemical water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a greatly promising technology to generate sustainable and renewable energy resources, which relies on the exploration regarding the design of electrocatalysts with high efficiency, high stability, and low cost. Transition metal phosphides (TMPs), as nonprecious metallic electrocatalysts, have been extensively investigated and proved to be high-efficient electrocatalysts in both HER and OER. In this minireview, a general overview of recent progress in developing high-performance TMP electrocatalysts for electrochemical water splitting has been presented. Design strategies including composition engineering by element doping, hybridization, and tuning the molar ratio, structure engineering by porous structures, nanoarray structures, and amorphous structures, and surface/interface engineering by tuning surface wetting states, facet control, and novel substrate are summarized. Key scientific problems and prospective research directions are also briefly discussed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Huan Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
16
|
Chen Q, Zhang Q, Liu H, Liang J, Peng W, Li Y, Zhang F, Fan X. Preparation of Hollow Cobalt-Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007858. [PMID: 33690975 DOI: 10.1002/smll.202007858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Transition metal phosphides (TMPs), especially the dual-metal TMPs, are highly active non-precious metal oxygen evolution reaction (OER) electrocatalysts. Herein, an interesting atom migration phenomenon induced by Kirkendall effect is reported for the preparation of cobalt-iron (Co-Fe) phosphides by the direct phosphorization of Co-Fe alloys. The compositions and distributions of the Co and Fe phosphides phases on the surfaces of the electrocatalysts can be readily controlled by Cox Fey alloys precursors and the phosphorization process with interesting atom migration phenomenon. The optimized Co7 Fe3 phosphides exhibit a low overpotential of 225 mV at 10 mA cm-2 in 1 m KOH alkaline media, with a small Tafel slope of 37.88 mV dec-1 and excellent durability. It only requires a voltage of 1.56 V to drive the current density of 10 mA cm-2 when used as both anode and cathode for overall water splitting. This work opens a new strategy to controllable preparation of dual-metal TMPs with designed phosphides active sites for enhanced OER and overall water splitting.
Collapse
Affiliation(s)
- Qiming Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Huibin Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Junmei Liang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
17
|
Fe(III) Ions-Assisted Aniline Polymerization Strategy to Nitrogen-Doped Carbon-Supported Bimetallic CoFeP Nanospheres as Efficient Bifunctional Electrocatalysts toward Overall Water Splitting. MATERIALS 2021; 14:ma14061473. [PMID: 33803013 PMCID: PMC8002635 DOI: 10.3390/ma14061473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022]
Abstract
It remains an urgent demand and challenging task to design and fabricate efficient, stable, and inexpensive catalysts toward sustainable electrochemical water splitting for hydrogen production. Herein, we explored the use of Fe(III) ion-assisted aniline polymerization strategy to embed bimetallic CoFeP nanospheres into the nitrogen-doped porous carbon framework (referred CoFeP-NC). The as-prepared CoFeP-NC possesses excellent hydrogen evolution reaction (HER) performance with the small overpotential (η10) of 81 mV and 173 mV generated at a current density of 10 mA cm-2 in acidic and alkaline media, respectively. Additionally, it can also efficiently catalyze water oxidation (OER), which shows an ideal overpotential (η10) of 283 mV in alkaline electrolyte (pH = 14). The remarkable catalytic property of CoFeP-NC mainly stems from the strong synergetic effects of CoFeP nanospheres and carbon network. On the one hand, the interaction between the two can make better contact between the electrolyte and the catalyst, thereby providing a large number of available active sites. On the other hand, it can also form a network to offer better durability and electrical conductivity (8.64 × 10-1 S cm-1). This work demonstrates an efficient method to fabricate non-noble electrocatalyst towards overall water splitting, with great application prospect.
Collapse
|
18
|
Ganesan V, Son J, Kim J. CoP 2/Fe-CoP 2 yolk-shell nanoboxes as efficient electrocatalysts for the oxygen evolution reaction. NANOSCALE 2021; 13:4569-4575. [PMID: 33599645 DOI: 10.1039/d0nr08108f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of an efficient electrocatalyst is an important requirement for water splitting systems to produce clean and sustainable hydrogen fuel. Herein, we synthesized CoP2/Fe-CoP2 yolk-shell nanoboxes (YSBs) as efficient electrocatalysts for the oxygen evolution reaction (OER). Initially, zeolitic imidazolate framework-67/CoFe-Prussian blue analogue (ZIF-67/CoFe-PBA) YSBs were prepared by the reaction of ZIF-67 and [Fe(CN)6]3- ions in the presence of a small amount of water as an etching agent. The size of the CoP2 yolk depends on the amount of water. The heteronanostructure composed of the CoP2 yolk and the FexCo1-xP2 shell with a cubic shape was obtained by phosphidation of ZIF-67/CoFe-PBA YSBs. Benefiting from the unique structure and chemical composition, the CoP2/Fe-CoP2 YSB electrocatalyst has a large specific surface area of 114 m2 g-1 and shows superior electrocatalytic performances for the OER such as a low overpotential of 266 mV, a small Tafel slope value of 68.1 mV dec-1, and excellent cyclic stability.
Collapse
Affiliation(s)
- Vinoth Ganesan
- Department of Chemistry, Kongju National University, 56 Gongjudaehak-ro, Gongju-si, Chungnam-do 32588, Republic of Korea.
| | - Jihye Son
- Department of Chemistry, Kongju National University, 56 Gongjudaehak-ro, Gongju-si, Chungnam-do 32588, Republic of Korea.
| | - Jinkwon Kim
- Department of Chemistry, Kongju National University, 56 Gongjudaehak-ro, Gongju-si, Chungnam-do 32588, Republic of Korea.
| |
Collapse
|
19
|
Qiu F, Shi J, Guo M, Chen S, Xia J, Lu ZH. Rapid Synthesis of Large-Size Fe 2O 3 Nanoparticle Decorated NiO Nanosheets via Electrochemical Exfoliation for Enhanced Oxygen Evolution Electrocatalysis. Inorg Chem 2021; 60:959-966. [PMID: 33356196 DOI: 10.1021/acs.inorgchem.0c03073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel nonprecious Fe2O3 nanoparticle decorated NiO nanosheet (Fe2O3 NPs@NiO NSs) composite has been obtained by a rapid one-pot electrochemical exfoliation method and can be used as an efficient oxygen evolution reaction (OER) catalyst. In the nanocomposite, the Fe2O3 NPs are uniformly anchored on the ultrathin graphene-like NiO nanosheets. At the same time, we also studied the influence of the Fe/Ni molar ratio on the morphology and catalytic activity. The Fe2O3 NPs@NiO NSs nanocomposite possessed a high BET surface area (194.1 m2 g-1), which is very conducive to the charge/mass transfer of electrolyte ions and O2. Owing to the unique two-dimensional (2D) heterostructures and rational Fe content, the as-prepared Fe2O3 NPs@NiO NSs show high catalytic performance, a low overpotential at 10 mA cm-2 (221 mV), a small Tafel slope (53.4 mV dec-1), and 2000 cycle and 20 h long-term durability. The introduction of Fe2O3 NPs is beneficial to accelerating charge transport, increasing the electrochemically active surface area (ECSA), and thus improving the release of oxygen bubbles from the electrode surface.
Collapse
Affiliation(s)
- Fen Qiu
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Jinghui Shi
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Manman Guo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, People's Republic of China
| | - Jianhui Xia
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| |
Collapse
|
20
|
Zhang X, Zhang L, Zhu Y, Li Z, Wang Y, Wågberg T, Hu G. Increasing Electrocatalytic Oxygen Evolution Efficiency through Cobalt-Induced Intrastructural Enhancement and Electronic Structure Modulation. CHEMSUSCHEM 2021; 14:467-478. [PMID: 33043594 PMCID: PMC7821219 DOI: 10.1002/cssc.202001975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/22/2020] [Indexed: 05/09/2023]
Abstract
Electrolytic water splitting using surplus electricity represents one of the most cost-effective and promising strategies for hydrogen production. The high overpotential of the oxygen-evolution reaction (OER) caused by the multi-electron transfer process with a high chemical energy barrier, however, limits its competitiveness. Here, a highly active and stable OER electrocatalyst was designed through a cobalt-induced intrastructural enhancement strategy combined with suitable electronic structure modulation. A carved carbon nanobox was embedded with tri-metal phosphide from a uniform Ni-Co-Fe Prussian blue analogue (PBA) nanocube by sequential NH3 ⋅ H2 O etching and thermal phosphorization. The sample exhibited an OER activity in an alkaline medium, reaching a current density of 10 mA cm-2 at an overpotential of 182 mV and displayed a small Tafel slope of 47 mV dec-1 , superior to the most recently reported OER electrocatalysts. Moreover, it showed impressive electrocatalytic durability, increasing by approximately 2.7 % of operating voltage after 24 h of continuous testing. The excellent OER activity and stability are ascribed to a favorable transfer of mass and charge provided by the porous carbon shell, synergistic catalysis between the three-component metal phosphides originating from appropriate electronic structure modulation, more exposed catalytic sites on the hollow structure, and chainmail catalysis resulting from the carbon protective layer. It is foreseen that this successfully demonstrated design concept can be easily extended to other heterogeneous catalyst designs.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and EngineeringAnhui University of Science and TechnologyHuainan, Anhui232001P. R. China
| | - Lei Zhang
- School of Materials Science and EngineeringAnhui University of Science and TechnologyHuainan, Anhui232001P. R. China
| | - Yuanxin Zhu
- School of Materials Science and EngineeringAnhui University of Science and TechnologyHuainan, Anhui232001P. R. China
| | - Ziyao Li
- School of Materials Science and EngineeringAnhui University of Science and TechnologyHuainan, Anhui232001P. R. China
| | - Yong Wang
- Institute for Ecological Research and Pollution Control of Plateau LakesSchool of Ecology and Environmental ScienceYunnan UniversityKunming650504P. R. China
| | | | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau LakesSchool of Ecology and Environmental ScienceYunnan UniversityKunming650504P. R. China
- Department of PhysicsUmeå UniversityUmeå901 87Sweden
| |
Collapse
|
21
|
Disordered and oxygen vacancy-rich NiFe hydroxides/oxides in situ grown on amorphous ribbons for boosted alkaline water oxidation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Chen J, Li P, Lin EE. A molecular dynamics study on the mechanical properties of Fe-Ni alloy nanowires and their temperature dependence. RSC Adv 2020; 10:40084-40091. [PMID: 35520820 PMCID: PMC9057458 DOI: 10.1039/d0ra07831j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
Fe–Ni alloy nanowires are widely used in high-density magnetic memories and catalysts due to their unique magnetic and electrochemical properties. Understanding the deformation mechanism and mechanical property of Fe–Ni alloy nanowires is of great importance for the development of devices. However, the detailed deformation mechanism of the alloy nanowires at different temperatures is unclear. Herein, the deformation mechanism of Fe–Ni alloy nanowires and their mechanical properties were investigated via the molecular dynamics simulation method. It was found that the local atomic pressure fluctuation of the Fe–Ni alloy nanowire surface became more prominent with an increase in the Ni content. At low temperature conditions (<50 K), the plastic deformation mechanism of the Fe–Ni alloy nanowires switched from the twinning mechanism to the dislocation slip mechanism with the increase in the Ni content from 0.5 at% to 8.0 at%. In the temperature range of 50–800 K, the dislocation slip mechanism dominated the deformation. Simulation results indicated that there was a significant linear relationship between the Ni content, temperature, and ultimate stress in the temperature range of 50–800 K. Our research revealed the association between the deformation mechanism and temperature in Fe–Ni alloy nanowires, which may facilitate new alloy nanowire designs. Deformation mechanism and mechanical property of Fe–Ni alloy nanowires are investigated through molecular dynamics simulation method.![]()
Collapse
Affiliation(s)
- Jianxin Chen
- State Key Laboratory of Solidification Processing, MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Northwestern Polytechnical University Xi'an 710072 China +86 29 88460499.,School of Engineering and Materials Science, Queen Mary University of London Mile End Road London E14NS UK
| | - Pengtao Li
- State Key Laboratory of Solidification Processing, MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Northwestern Polytechnical University Xi'an 710072 China +86 29 88460499.,School of Engineering and Materials Science, Queen Mary University of London Mile End Road London E14NS UK
| | - E Emily Lin
- School of Engineering and Materials Science, Queen Mary University of London Mile End Road London E14NS UK
| |
Collapse
|
23
|
Li H, Xu SM, Li Y, Yan H, Xu S. An in situ phosphorization strategy towards doped Co 2P scaffolded within echinus-like carbon for overall water splitting. NANOSCALE 2020; 12:19253-19258. [PMID: 32930311 DOI: 10.1039/d0nr04722h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eco-environmental synthesis of non-expensive electrocatalysts such as transition-metal phosphides (TMPs) is critical to advancing renewable hydrogen fuel. TMP nanostructures prepared typically by introducing additional conventional phosphorus sources are suggested as promising durable and low-cost electrocatalysts. Herein, an eco-efficient guest/host precursor-based synthesis route is demonstrated to prepare doped Co2P scaffolded within echinus-like carbon ((M0.2Co0.8)2P@C, M = Fe and Ni) as electrocatalysts for overall water splitting. (Fe0.2Co0.8)2P@C is derived by directly pyrolyzing a precursor of sodium dodecyl phosphate-intercalated CoFe-layered double hydroxide (CoFe-LDH), without introducing any additional phosphorus source. Electrocatalytic testing shows that (Fe0.2Co0.8)2P@C requires overpotentials of 290 and 130 mV at a current density of 10 mA cm-2 for oxygen and hydrogen evolution reactions (OER and HER) in an alkaline electrolyte, respectively. Furthermore, a different (Ni0.2Co0.8)2P@C composite, obtained only by altering a NiCo-LDH host, exhibits better electrocatalytic activities than those of Fe-doped (Fe0.2Co0.8)2P@C. In particular, the (No0.2Co0.8)2P@C||(Ni0.2Co0.8)2P@C electrolyzer affords a current density of 10 mA cm-2 at a decent voltage of 1.62 V for overall water splitting. Electron energy-loss spectroscopy (EELS) observations show the oxyhydroxide layer formed on the surface, and density functional theory (DFT) calculations reveal that Fe-/Ni-doping lowers the Gibbs free energy barrier for the OER and the HER, both underpinning the enhancements.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
24
|
Huang Y, Li M, Yang W, Yu Y, Hao S. Ce‐Doped Ordered Mesoporous Cobalt Ferrite Phosphides as Robust Catalysts for Water Oxidation. Chemistry 2020; 26:13305-13310. [DOI: 10.1002/chem.202003185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Yarong Huang
- MIIT Key Laboratory of Critical Materials Technology for, New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 P.R. China
| | - Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for, New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 P.R. China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for, New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 P.R. China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for, New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 P.R. China
| | - Sue Hao
- MIIT Key Laboratory of Critical Materials Technology for, New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 P.R. China
| |
Collapse
|
25
|
Li M, Zhang Z, Xiong H, Wang L, Zhuang S, Argyle MD, Tang Y, Yang X, Chen Y, Wan P, Fan M. 0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets. ChemElectroChem 2020. [DOI: 10.1002/celc.202000604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mujie Li
- Institute of Applied ElectrochemistryBeijing University of Chemical Technology Beijing 100029 PR China
| | - Zhongyi Zhang
- Institute of Applied ElectrochemistryBeijing University of Chemical Technology Beijing 100029 PR China
| | - Hailang Xiong
- Institute of Applied ElectrochemistryBeijing University of Chemical Technology Beijing 100029 PR China
| | - Linan Wang
- Institute of Applied ElectrochemistryBeijing University of Chemical Technology Beijing 100029 PR China
| | - Shuxian Zhuang
- Institute of Applied ElectrochemistryBeijing University of Chemical Technology Beijing 100029 PR China
| | - Morris D. Argyle
- Department of Chemical EngineeringBrigham Young University Provo, UT 84602 USA
| | - Yang Tang
- Institute of Applied ElectrochemistryBeijing University of Chemical Technology Beijing 100029 PR China
| | - Xiaojin Yang
- College of Chemical EngineeringBeijing University of Chemical Technology Beijing 100029 PR China
| | - Yongmei Chen
- Institute of Applied ElectrochemistryBeijing University of Chemical Technology Beijing 100029 PR China
| | - Pingyu Wan
- Institute of Applied ElectrochemistryBeijing University of Chemical Technology Beijing 100029 PR China
| | - Maohong Fan
- School of Civil and Environmental EngineeringGeorgia Institute of Technology Atlanta, GA 30332 USA
- Departments of Chemical and Petroleum EngineeringUniversity of Wyoming Laramie, WY 82071 USA
| |
Collapse
|
26
|
Tang YJ, You L, Zhou K. Enhanced Oxygen Evolution Reaction Activity of a Co 2P@NC-Fe 2P Composite Boosted by Interfaces Between a N-Doped Carbon Matrix and Fe 2P Microspheres. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25884-25894. [PMID: 32412228 DOI: 10.1021/acsami.0c04902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing highly efficient and low-cost transition-metal-based electrocatalysts with a large number of interfaces to increase their active site densities constitutes a major advancement in the development of water-splitting technology. Herein, a bimetallic phosphide composite (Co2P@NC-Fe2P) is successfully synthesized from a ferric hydroxyphosphate-zeolitic imidazolate framework hybrid precursor (FeHP-ZIF-67). Benefitting from morphology and composition regulations, the FeHP-ZIF-67 precursor is prepared by a room-temperature solution synthesis method, which exhibits an optimal morphology, where FeHP microspheres are coated with excess ZIF-67 nanoparticles. During the annealing of FeHP-ZIF-67, FeHP serves as a source of phosphorus to form Fe2P and Co2P simultaneously, where Co2P nanoparticles coated with an N-doped carbon (NC) matrix derived from ZIF-67 are partially adsorbed onto the surface of Fe2P microspheres, thereby forming numerous NC-Fe2P interfaces. The optimal Co2P@NC-Fe2P composite has an overpotential of 260 mV at a current density of 10 mA cm-2, a small Tafel slope of 41 mV dec-1, and long-term stability of over 35 h in an alkaline medium for oxygen evolution reactions (OERs). Such a superior OER performance is attributed to the active NC-Fe2P interfaces in the Co2P@NC-Fe2P composite. This work provides a new strategy to optimize transition-metal phosphides with effective interfaces for OER electrocatalysis.
Collapse
Affiliation(s)
- Yu-Jia Tang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Liming You
- Environmental Process Modelling Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141, Singapore
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Process Modelling Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141, Singapore
| |
Collapse
|
27
|
Zhang Y, Gao X, Lv L, Xu J, Lin H, Ding Y, Wang C. Tailoring π-symmetry electrons in cobalt–iron phosphide for highly efficient oxygen evolution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Li M, Deng X, Xiang K, Liang Y, Zhao B, Hao J, Luo JL, Fu XZ. Value-Added Formate Production from Selective Methanol Oxidation as Anodic Reaction to Enhance Electrochemical Hydrogen Cogeneration. CHEMSUSCHEM 2020; 13:914-921. [PMID: 31808618 DOI: 10.1002/cssc.201902921] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Electrolytic overall water splitting is a promising approach to produce H2 , but its efficiency is severely limited by the sluggish kinetics of the oxygen evolution reaction (OER) and the low activity of current electrocatalysts. To solve these problems, in addition to the development of efficient precious-metal catalysts, an effective strategy is proposed to replace the OER by the selective methanol oxidation reaction. Ni-Co hydroxide [Nix Co1-x (OH)2 ] nanoarrays were obtained through a facile hydrothermal treatment as the bifunctional electrocatalysts for the co-electrolysis of methanol/water to produce H2 and value-added formate simultaneously. The electrocatalyst could catalyze selective methanol oxidation (≈1.32 V) with a significantly lower energy consumption (≈0.2 V less) than OER. Importantly, methanol was transformed exclusively to value-added formate with a high Faradaic efficiency (selectivity) close to 100 %. Specifically, a cell voltage of only approximately 1.5 V was required to generate a current density of 10 mA cm-2 . Furthermore, the Ni0.33 Co0.67 (OH)2 /Ni foam nanoneedle arrays presented an outstanding stability for overall co-electrolysis.
Collapse
Affiliation(s)
- Mei Li
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Xiaohui Deng
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Kun Xiang
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Yue Liang
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Bin Zhao
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jie Hao
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2G6, Canada
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| |
Collapse
|
29
|
Li Y, Ge L, Zhou Y, Li L, Li W, Xu J, Li Y. KB-templated in situ synthesis of highly dispersed bimetallic NiFe phosphides as efficient oxygen evolution catalysts. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00627k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
KB-templated in situ synthesized highly dispersed bimetallic NiFe phosphides function as efficient oxygen evolution catalysts.
Collapse
Affiliation(s)
- Yunheng Li
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Lin Ge
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Yajun Zhou
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liang Li
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Wei Li
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jieyu Xu
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|