1
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Chen W, Huang Z, Chen H, Liu M. A Novel Approach of Electrocatalytic Deamination From Aromatic Amide to Diarylimide on Ni-PTFE Modified Electrode. Chemistry 2024; 30:e202400276. [PMID: 38757422 DOI: 10.1002/chem.202400276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
A hydrophobic Ni-PTFE modified electrode has been prepared by constant current and cathodic electroplating with a nickel sheet as substrate in a PTFE suspension. Then the Ni-PTFE modified electrode was used for electroreduction from aromatic amide to diarylimide. The electrochemical characterizations such as cyclic voltammogram, EIS, polarization curves, and electrode stability have been carried out by electrochemical workstation. The structure of the electroreduction product diarylimide was characterized by 1H NMR, FT-IR, MS(Mass Spectrum), and EA(Elemental Analyzer). Based on the hydrophobicity of the electrode, an approach suggested that the phenyl ketone radical may be formed by electroreductive deamination at the cathode. With the construction of C-N bond by the radical coupling, the electrocatalytic reduction may be comprised of a one-electron process including an ECC (Electrochemical-Chemical-Chemical) process. The electroreduction of aromatic amide to diarylimide may be controlled by both charge migration and concentration polarization. Electrocatalytic reduction of aromatic amides on Ni-PTFE modified electrodes is all well conversion ratio.
Collapse
Affiliation(s)
- Wenjun Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China
| | - Ziyang Huang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China
| | - Hongyan Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China
| | - Min Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou Fujian, 350007, China
| |
Collapse
|
3
|
He C, Chen Y, Hao Z, Wang L, Wang M, Cui X. Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge-Oxygen Vacancies: Investigating Mechanism from the Experimental and First-Principle Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309500. [PMID: 38368265 DOI: 10.1002/smll.202309500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Indexed: 02/19/2024]
Abstract
Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas-liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6-fold higher than the TMO-free process. The theoretical calculations show that N2 molecules prefer to side-on chemisorb on the mechano-induced bridge-oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative-way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost-effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect-engineering-induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation.
Collapse
Affiliation(s)
- Chengli He
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yang Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zixiang Hao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Linrui Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Mingyan Wang
- School of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Xiaoli Cui
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Gonnet L, Borchers TH, Lennox CB, Vainauskas J, Teoh Y, Titi HM, Barrett CJ, Koenig SG, Nagapudi K, Friščić T. The " η-sweet-spot" ( ηmax) in liquid-assisted mechanochemistry: polymorph control and the role of a liquid additive as either a catalyst or an inhibitor in resonant acoustic mixing (RAM). Faraday Discuss 2023; 241:128-149. [PMID: 36239309 DOI: 10.1039/d2fd00131d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Resonant acoustic mixing (RAM) offers a simple, efficient route for mechanochemical synthesis in the absence of milling media or bulk solvents. Here, we show the use of RAM to conduct the copper-catalysed coupling of sulfonamides and carbodiimides. This coupling was previously reported to take place only by mechanochemical ball milling, while in conventional solution environments it is not efficient, or does not take place at all. The results demonstrate RAM as a suitable methodology to conduct reactions previously accessed only by ball milling and provide a detailed, systematic overview of how the amount of liquid additive, measured by the ratio of liquid volume to weight of reactants (η, in μL mg-1), can affect the course of a mechanochemical reaction and the polymorphic composition of its product. Switching from ball milling to RAM allowed for the discovery of a new polymorph of the model sulfonylguanidine obtained by catalytic coupling of di(cyclohexyl)carbodiimide (DCC) and p-toluenesulfonamide, and the ability to control reaction temperature in RAM enabled in situ control of the polymorphic behaviour of this nascent product. We show that the reaction conversion for a given reaction time does not change monotonically but, instead, achieves a maximum for a well-defined η-value. This "η-sweet-spot" of conversion is herein designated ηmax. The herein explored reactions demonstrate sensitivity to η on the order of 0.01 μL mg-1, which corresponds to an amount of liquid additive below 5 mol% compared to the reactants, and is at least one to two orders of magnitude lower than the η-value typically considered in the design of liquid-assisted ball milling mechanochemical reactions. Such sensitivity suggests that strategies to optimise liquid-assisted mechanochemical reactions should systematically evaluate η-values at increments of 0.01 μL mg-1, or even finer. At η-values other than ηmax the reaction conversion drops off, demonstrating that the same liquid additive can act either as a catalyst or an inhibitor of a mechanochemical reaction, depending on the amount.
Collapse
Affiliation(s)
- Lori Gonnet
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada.
| | - Tristan H Borchers
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada.
| | - Cameron B Lennox
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada.
| | - Jogirdas Vainauskas
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada.
| | - Yong Teoh
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada.
| | - Hatem M Titi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada.
| | - Christopher J Barrett
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada.
| | - Stefan G Koenig
- Small Molecule Pharmaceutical Sciences, Genentech Inc., One DNA Way, South San Francisco, CA 94080, USA.
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., One DNA Way, South San Francisco, CA 94080, USA.
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada. .,School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
5
|
Wang G, Geng Y, Zhao Z, Zhang Q, Li X, Wu Z, Bi S, Zhan H, Liu W. Exploring the In Situ Formation Mechanism of Polymeric Aluminum Chloride-Silica Gel Composites under Mechanical Grinding Conditions: As a High-Performance Nanocatalyst for the Synthesis of Xanthene and Pyrimidinone Compounds. ACS OMEGA 2022; 7:32577-32587. [PMID: 36120003 PMCID: PMC9476523 DOI: 10.1021/acsomega.2c04159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The use of mechanical ball milling to facilitate the synthesis of organic compounds has attracted intense interest from organic chemists. Herein, we report a new process for the preparation of xanthene and pyrimidinone compounds by a one-pot method using polymeric aluminum chloride (PAC), silica gel, and reaction raw materials under mechanical grinding conditions. During the grinding process, polymeric aluminum chloride and silica gel were reconstituted in situ to obtain a new composite catalyst (PAC-silica gel). This catalyst has good stability (six cycles) and wide applicability (22 substrates). The Al-O-Si active center formed by in situ grinding recombination was revealed to be the key to the effective catalytic performance of the PAC-silica gel composites by the comprehensive analysis of the catalytic materials before and after use. In addition, the mechanism of action of the catalyst was verified using density functional theory, and the synthetic pathway of the xanthene compound was reasonably speculated with the experimental data. Mechanical ball milling serves two purposes in this process: not only to induce the self-assembly of silica and PAC into new composites but also to act as a driving force for the catalytic reaction to take place. From a practical point of view, this "one-pot" catalytic method eliminates the need for a complex preparation process for catalytic materials. This is a successful example of the application of mechanochemistry in materials and organic synthesis, offering unlimited possibilities for the application of inorganic polymer materials in green synthesis and catalysis promoted by mechanochemistry.
Collapse
Affiliation(s)
- Gang Wang
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Yage Geng
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Zejing Zhao
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Qiuping Zhang
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Xiang Li
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Zhiqiang Wu
- College
of Chemistry and Chemical Engineering, Ningxia
Normal university, Guyuan 756000, P. R. China
| | - Shuxian Bi
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Haijuan Zhan
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Wanyi Liu
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
6
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
7
|
Fan W, Zhang Y, Li Y, Zhang W, Huang D. Solvent-Free Strategy for Direct Access to Versatile Quaternary Ammonium Salts with Complete Atom Economy. CHEMSUSCHEM 2022; 15:e202200529. [PMID: 35466550 DOI: 10.1002/cssc.202200529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Indexed: 06/14/2023]
Abstract
A solvent-free method for the synthesis of quaternary ammonium salts (QAS) by iodoquaternization of alkenes with N-heteroarenes was reported. Its advantages lie in energy-saving and clean production by using iodine as the oxidant and manual grinding the starting materials, together with the complete atom economy and low process mass intensity (PMI) value. Demonstrated by 50 examples, the generated QAS was proved to be able to produce valuable chemicals, such as biological protease inhibitors, anti-cancer agents, and organic fluorescent materials.
Collapse
Affiliation(s)
- Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
8
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
9
|
Haas M, Lamour S, Christ SB, Trapp O. Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting. Commun Chem 2020; 3:140. [PMID: 36703456 PMCID: PMC9814773 DOI: 10.1038/s42004-020-00387-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023] Open
Abstract
The formation of carbohydrates represents an essential step to provide building blocks and a source of chemical energy in several models for the emergence of life. Formaldehyde, glycolaldehyde and a basic catalyst are the initial components forming a variety of sugar molecules in the cascade-type multi-step formose reaction. While numerous side reactions and even deterioration can be observed in aqueous media, selective prebiotic sugar formation is feasible in solid-state, mechanochemical reactions and might have occurred in early geochemistry. However, the precise role of different basic catalysts and the influence of the atmospheric conditions in the solid-state formose reaction remain unknown. Here we show, that in a primordial scenario the mechanochemical formose reaction is capable to form monosaccharides with a broad variety of mineral classes as catalysts with only minute amounts of side products such as lactic acid or methanol, independent of the atmospheric conditions. The results give insight into recent findings of formose sugars on meteorites and offer a water-free and robust pathway for monosaccharides independent of the external conditions both for the early Earth or an extra-terrestrial setting.
Collapse
Affiliation(s)
- Maren Haas
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| | - Saskia Lamour
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Sarah Babette Christ
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Oliver Trapp
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| |
Collapse
|
10
|
Avila-Ortiz CG, Juaristi E. Novel Methodologies for Chemical Activation in Organic Synthesis under Solvent-Free Reaction Conditions. Molecules 2020; 25:E3579. [PMID: 32781678 PMCID: PMC7464687 DOI: 10.3390/molecules25163579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
One central challenge for XXI century chemists is the development of sustainable processes that do not represent a risk either to humanity or to the environment. In this regard, the search for more efficient and clean alternatives to achieve the chemical activation of molecules involved in chemical transformations has played a prominent role in recent years. The use of microwave or UV-Vis light irradiation, and mechanochemical activation is already widespread in many laboratories. Nevertheless, an additional condition to achieve "green" processes comes from the point of view of so-called atom economy. The removal of solvents from chemical reactions generally leads to cleaner, more efficient and more economical processes. This review presents several illustrative applications of the use of sustainable protocols in the synthesis of organic compounds under solvent-free reaction conditions.
Collapse
Affiliation(s)
- Claudia Gabriela Avila-Ortiz
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020 Ciudad de México, Mexico
| |
Collapse
|
11
|
Porcheddu A, Colacino E, De Luca L, Delogu F. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00142] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
- Consorzio C.I.N.M.P.I.S., 70125 Bari, Italy
| | | | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|