1
|
Li J, Liu S, Zhan C. A 2D nanoflower-like ordered mesoporous Bi 12ZnO 20 catalyst with excellent photocatalytic antibacterial properties. Microbiol Spectr 2024; 12:e0062524. [PMID: 38980032 PMCID: PMC11302066 DOI: 10.1128/spectrum.00625-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The ordered mesoporous ZnO was successfully synthesized using the template method in this article, and Bi ions were etched into ZnO to form two-dimensional nanoflower structures of Bi12ZnO20 with NA3SSA as a guiding agent. The crystal structure, morphology, and optical properties of the photocatalyst were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy-dispersive spectrometer(EDS), and ultraviolet-visible diffuse reflectance spectrum (UV-vis DRS). Under illumination conditions, the obtained materials exhibited excellent bactericidal ability against both gram-positive and gram-negative bacteria, as well as effective inhibition against fungi. Among them, the bactericidal effect of Pseudomonas aeruginosa was found to be the most rapid, achieving a sterilization rate of 100% within 30 min of light irradiation. Even after three cycles of antibacterial activity testing, the Bi12ZnO20 material still demonstrated good photocatalytic performance. The nanoflower-shaped materials provide an enhanced fluid adsorption capacity and more active centers for photocatalytic reactions while also improving light absorption capacity, photogenerated electron-hole separation efficiency, and electron transport efficiency. The cytotoxicity assessment of Bi12ZnO20 revealed no significant toxic effects. Therefore, this study presents a nanoflower-shaped material with highly efficient photocatalytic antibacterial properties for applications in production and daily life; it holds significant importance in eliminating harmful bacteria and plays a crucial role in environmental protection. IMPORTANCE The flower-shaped photocatalytic material Bi12ZnO20, consisting of nanoparticles, was successfully synthesized in this study. Rigorous antibacterial experiments were conducted on various fungi using the material, yielding excellent results. Furthermore, the application of this material for antibacterial treatment of livestock and poultry manure sewage in real-life scenarios demonstrated remarkable efficacy.
Collapse
Affiliation(s)
- Jingmei Li
- Changchun University of Science and Technology, Changchun, China
| | - Shuai Liu
- Changchun University of Science and Technology, Changchun, China
| | - Chenming Zhan
- Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Thirumalraj B, Jaihindh DP, Alaswad SO, Sudhakaran MSP, Selvaganapathy M, Alfantazi A, Choe H, Kwon K. Fabricating BiOCl/BiVO 4 nanosheets wrapped in a graphene oxide heterojunction composite for detection of an antihistamine in biological samples. ENVIRONMENTAL RESEARCH 2022; 212:113636. [PMID: 35679907 DOI: 10.1016/j.envres.2022.113636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are essential medications for human and animal health, as they are used to battle urinary infections and bacterial diseases. Therefore, the rapid determination of antibiotic drugs in biological samples is necessary to address the current clinical challenge. Here, we developed a heterojunction ternary composite of BiOCl/BiVO4 nanosheets enriched with graphene oxide (BiOCl/BiVO4@GO) for accurate and minimal-level detection of an antihistamine (promethazine hydrochloride, PMZ) in urine samples. The BiOCl/BiVO4 nanosheets were prepared by a wet chemical approach using a deep eutectic green solvent. The spectroscopic and analytical methods verified the formation and interaction of the BiOCl/BiVO4@GO composite. Our results showed that the thoroughly exfoliated BiOCl/BiVO4@GO composite retained good electrical conductivity and fast charge transfer toward the electrode-electrolyte interface in neutral aqueous media. In addition, the experimental conditions were accurately optimized, and the BiOCl/BiVO4@GO composite showed excellent electrocatalytic activity toward the oxidation of PMZ. Indeed, the BiOCl/BiVO4@GO composite demonstrated a good linear response range (0.01-124.7 μM) and a detection level of 3.3 nM with a sensitivity of 1.586 μA μM-1 cm-2. In addition, the BiOCl/BiVO4@GO composite had excellent storage stability, good reproducibility, and reliable selectivity. Finally, the BiOCl/BiVO4@GO displayed a desirable recovery level of PMZ in urine samples for real-time monitoring.
Collapse
Affiliation(s)
- Balamurugan Thirumalraj
- School of Materials Science & Engineering, Kookmin University, Seoul 02707, Republic of Korea; Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006, Republic of Korea.
| | | | - Saleh O Alaswad
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - M S P Sudhakaran
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | | | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Heeman Choe
- School of Materials Science & Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyungjung Kwon
- Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
3
|
Niakan M, Masteri-Farahani M. An efficient clean and sustainable methodology for catalytic C-C coupling process over a Pd-free magnetically recoverable cobalt catalyst. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Chang H, Liang Z, Wang L, Wang C. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts. NANOSCALE 2022; 14:5639-5656. [PMID: 35333268 DOI: 10.1039/d2nr00522k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a clean and renewable energy carrier, hydrogen (H2) has become an attractive alternative to dwindling fossil fuels. The key to realizing hydrogen-based energy systems is to develop efficient and economical hydrogen production methods. The water electrolysis technique has the advantages of cleanliness, sustainability, and high efficiency, which can be applied to large-scale hydrogen production. However, the electrocatalytic oxygen evolution reaction (OER) at the anode plays a decisive role in the efficiency of hydrogen evolution during water splitting. Generally, noble metal catalysts (such as ruthenium and iridium) are considered to exhibit the best OER performance; however, they exhibit disadvantages such as high costs, limited reserves, and poor stability. Therefore, the research on highly efficient non-noble metal catalysts that can replace their noble metal counterparts has always been important. This review presents the recent advances in the preparation of high-performance OER electrocatalysts by regulating the electronic structure of 3d transition metals. First, we introduce the reaction mechanism of water splitting and the OER, which reveals the high requirement of the complex four-electron process of the OER. Second, the electron transfer mode and development progress of highly active transition metal electrocatalysts are used to summarize the research situation of transition metal OER catalysts in water splitting. Finally, the future development direction and challenges of transition metal catalysts are prospected based on the current research progress.
Collapse
Affiliation(s)
- Haiyang Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Zhijian Liang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
5
|
Rationally Designed Ternary Deep Eutectic Solvent Enabling Higher Performance for Non-Aqueous Redox Flow Batteries. Processes (Basel) 2022. [DOI: 10.3390/pr10040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Redox flow batteries hold promise as large-scale energy storage systems for off-grid electrification. The electrolyte is one of the key components of redox batteries. Inspired by the mechanism involved in solvents for extraction, a ternary deep eutectic solvent (DES) is demonstrated, in which glycerol is introduced into the original binary ethaline DES. Redox pairs (active substance) dissolved in the solvent have low charge transfer resistance. The results show that the viscosity of the solvent with the ratio of choline chloride to ethylene glycol to glycerol of 1:2:0.5 decreases from 51.2 mPa·s to 40.3 mPa·s after adding the redox pair, implying that the mass transfer resistance of redox pairs in this solvent is reduced. Subsequent cyclic voltammetry and impedance tests show that the electrochemical performance with the ternary DES as the electrolyte in redox flow batteries is improved. When the ratio of 1:2:0.5 ternary DES is used as the electrolyte, the power density of the battery (9.01 mW·cm−2) is 38.2% higher than that of the binary one (6.52 mW·cm−2). Fourier transform infrared spectroscopy further indicates that the introduction of glycerol breaks the hydrogen bond network of the solvent environment where the redox pair is located, unraveling the hydrogen bond supramolecular complex. Rational solvent design is an effective strategy to enhance the electrochemical performance of redox batteries.
Collapse
|
6
|
Boldrini CL, Quivelli AF, Manfredi N, Capriati V, Abbotto A. Deep Eutectic Solvents in Solar Energy Technologies. Molecules 2022; 27:709. [PMID: 35163969 PMCID: PMC8838785 DOI: 10.3390/molecules27030709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Deep Eutectic Solvents (DESs) have been widely used in many fields to exploit their ecofriendly characteristics, from green synthetic procedures to environmentally benign industrial methods. In contrast, their application in emerging solar technologies, where the abundant and clean solar energy is used to properly respond to most important societal needs, is still relatively scarce. This represents a strong limitation since many solar devices make use of polluting or toxic components, thus seriously hampering their eco-friendly nature. Herein, we review the literature, mainly published in the last few years, on the use of DESs in representative solar technologies, from solar plants to last generation photovoltaics, featuring not only their passive role as green solvents, but also their active behavior arising from their peculiar chemical nature. This collection highlights the increasing and valuable role played by DESs in solar technologies, in the fulfillment of green chemistry requirements and for performance enhancement, in particular in terms of long-term temporal stability.
Collapse
Affiliation(s)
- Chiara Liliana Boldrini
- Solar Energy Research Center MIBSOLAR, Department of Materials Science, INSTM Milano-Bicocca Research Unit, University of Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy; (C.L.B.); (A.F.Q.); (N.M.)
| | - Andrea Francesca Quivelli
- Solar Energy Research Center MIBSOLAR, Department of Materials Science, INSTM Milano-Bicocca Research Unit, University of Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy; (C.L.B.); (A.F.Q.); (N.M.)
| | - Norberto Manfredi
- Solar Energy Research Center MIBSOLAR, Department of Materials Science, INSTM Milano-Bicocca Research Unit, University of Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy; (C.L.B.); (A.F.Q.); (N.M.)
| | - Vito Capriati
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
- Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Alessandro Abbotto
- Solar Energy Research Center MIBSOLAR, Department of Materials Science, INSTM Milano-Bicocca Research Unit, University of Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy; (C.L.B.); (A.F.Q.); (N.M.)
| |
Collapse
|
7
|
Mudring AV, Hammond O. Ionic Liquids and Deep Eutectics as a Transformative Platform for the Synthesis of Nanomaterials. Chem Commun (Camb) 2022; 58:3865-3892. [DOI: 10.1039/d1cc06543b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) are becoming a revolutionary synthesis medium for inorganic nanomaterials, permitting more efficient, safer and environmentally benign preparation of high quality products. A smart combination of ILs and...
Collapse
|
8
|
Bai X, Jia T, Hao D, Yilin X, Linlong G. The tremendous boost for photocatalytic properties of g-C3N4: regulation from polymerization kinetics to crystal structure engineering. CrystEngComm 2022. [DOI: 10.1039/d1ce01547h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphite carbon nitride (g-C3N4) has become research hotspot owing to its special electronic structure and excellent chemical stability. Although g-C3N4 has made great progress in the field of photocatalysis, its...
Collapse
|
9
|
Tseng TW, Chen TW, Chen SM, Kokulnathan T, Ahmed F, Hasan PMZ, Bilgrami AL, Kumar S. Construction of strontium phosphate/graphitic-carbon nitride: A flexible and disposable strip for acetaminophen detection. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124542. [PMID: 33257129 DOI: 10.1016/j.jhazmat.2020.124542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
A facile technique has been used to synthesize the strontium phosphate interlinked with graphitic carbon nitride nanosheets (SrP/g-CN NSs) nanocomposite for highly selective detection of acetaminophen (AP). The formation of SrP/g-CN NSs nanocomposite is evidenced by several spectroscopic and analytical methods. It was demonstrated that the SrP/g-CN NSs modified screen-printed carbon electrode (SPCE) exhibits excellent catalytic performance with low peak potential towards AP detection than those of pristine SrP-, g-CN NSs-, and bare- SPCEs. The outstanding electrochemical performance can be attributed to the robust synergistic effect between SrP and g-CN NSs. Likewise, g-CN NSs possess a porous multilayer network, which provides a large surface area, fast charge transferability, electrical conductivity, and numerous active sites. Under the optimal conditions, the fabricated sensor could detect AP with a linear relationship range from 0.01 to 370 µM, and the detection limit is calculated to be as low as 2.0 nM. The proposed sensor is successfully used to determine AP in water samples with satisfactory results.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan, ROC; Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Thangavelu Kokulnathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC; Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - P M Z Hasan
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia; Department of Physics, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, India
| |
Collapse
|
10
|
Han W, Lin H, Fang F, Zhang Y, Zhang K, Yu X, Chang K. The effect of Fe( iii) ions on oxygen-vacancy-rich BiVO 4 on the photocatalytic oxygen evolution reaction. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01559a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The surface oxygen vacancies could promote the photocatalytic O2 evolution of BiVO4. Simultaneously, Fe3+ ions in solution could facilitate the holes' transfer to improve the water oxidation reaction.
Collapse
Affiliation(s)
- Wenjun Han
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Huiwen Lin
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Fan Fang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yaqian Zhang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Kai Zhang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Kun Chang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|