1
|
Sun Z, Shao C, Hao S, Zhang J, Ren W, Wang B, Xiao L, Lei H, Liu TX, Yuan Z, Sun R. Lignin-Based Photothermal Materials: Bridging Sustainability and High-Efficiency Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501259. [PMID: 40279516 PMCID: PMC12120746 DOI: 10.1002/advs.202501259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Indexed: 04/27/2025]
Abstract
Photothermal materials can effectively absorb light and convert it into heat, providing sustainable solutions to mitigate environmental pollution and energy shortages. Compared to traditional photothermal materials, lignin has garnered significant attention due to its wide availability, low cost, biocompatibility, renewability, and sustainability. Consequently, lignin-based materials are considered ideal candidates for the development of eco-friendly photothermal systems, aligning well with the increasing demand for sustainable energy solutions. This review discusses the potential of lignin-based photothermal materials, highlighting their unique molecular structure and the photothermal properties imparted by their aromatic rings, which facilitate effective energy conversion through non-radiative vibrational relaxation. Discussed the latest advances in the applications of lignin photothermal materials in photothermal drive, solar desalination, and biomedicine. Despite the significant potential of lignin, challenges such as structural variability, long-term stability, and scalability remain critical. This paper integrates recent progress and proposes strategies to optimize the photothermal performance of lignin-based materials, while emphasizing important directions for sustainable development, thereby providing a roadmap to fully realize the potential of lignin in next-generation green technologies.
Collapse
Affiliation(s)
- Zhiwen Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterialsLiaoning Collaborative Innovation Center for Lignocellulosic BiorefineryCollege of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalian116034China
| | - Changyou Shao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterialsLiaoning Collaborative Innovation Center for Lignocellulosic BiorefineryCollege of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalian116034China
- College of Materials EngineeringFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Sanwei Hao
- School of Materials Science and EngineeringShandong University of TechnologyZibo255000China
| | - Jifei Zhang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterialsLiaoning Collaborative Innovation Center for Lignocellulosic BiorefineryCollege of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalian116034China
| | - Wenfeng Ren
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterialsLiaoning Collaborative Innovation Center for Lignocellulosic BiorefineryCollege of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalian116034China
| | - Bing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterialsLiaoning Collaborative Innovation Center for Lignocellulosic BiorefineryCollege of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalian116034China
| | - Lingping Xiao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterialsLiaoning Collaborative Innovation Center for Lignocellulosic BiorefineryCollege of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalian116034China
| | - Hanhui Lei
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Terence X. Liu
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Zhanhui Yuan
- College of Materials EngineeringFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Run‐cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterialsLiaoning Collaborative Innovation Center for Lignocellulosic BiorefineryCollege of Light Industry and Chemical EngineeringDalian Polytechnic UniversityDalian116034China
| |
Collapse
|
2
|
Shao Q, Zhou X, Li Y, Dong X, Qiu X, Zheng D. Extracting Lignin with Superior Photothermal Performance from Wood in Molten Salt Hydrate for Preparation of a Solar-Driven Gradient Evaporator. CHEMSUSCHEM 2025:e2500538. [PMID: 40166961 DOI: 10.1002/cssc.202500538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Developing sustainable solar-driven evaporators requires efficient photothermal materials and rational structural design. This study presents a green strategy for extracting lignin with enhanced photothermal performance from wood using molten salt hydrate (MSH) and citric acid under mild conditions. Systematic investigations reveal that elevated reaction temperatures (170 °C) promoted lignin depolymerization (Mw = 1206) and increased phenolic hydroxyl content (3.5 mmol g-1), enhancing π-π stacking interactions to achieve a photothermal conversion efficiency of 36.31%. Structural analyses through 2D-HSQC NMR confirm βO4 bond cleavage and demethylation, while fluorescence quenching validates reduced radiative losses. Leveraging this lignin, a gradient evaporator is fabricated by integrating polyvinyl alcohol (PVA)-modified melamine foam (MF) with a hydrophobic lignin-polyvinylidene fluoride (PVDF) photothermal layer. The evaporator exhibits hierarchical wettability, enabling gravity-guided water transport. It demonstrates robust performance in hypersaline water (1.85 kg m-2 h-1 for 10.5 wt.% brine) and dye removal (>99.98% rejection) under 0.1 W cm-2 sun irradiation and environmental heat harvesting. Additionally, lignin-coated thermoelectric devices generate stable power (27.69 W m-2) by solar-thermal conversion. This work provides an eco-friendly pathway for lignin valorization and scalable solar evaporation systems, addressing energy-water challenges through biomass resource utilization.
Collapse
Affiliation(s)
- Qizhao Shao
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Xuan Zhou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Yiting Li
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, 510640, China
| | - Xiaopu Dong
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dafeng Zheng
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| |
Collapse
|
3
|
Zhang J, Sun J, Zhou X, Ou R, Sun L, Guo C, Fan Q, Gao Z. Ultra-strong and solvent-resistant lignin-based non-isocyanate polyurethane adhesives: One-pot strategy toward versatile bonding. Int J Biol Macromol 2025; 287:138622. [PMID: 39672421 DOI: 10.1016/j.ijbiomac.2024.138622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Isocyanate-free polyurethane adhesives have attracted considerable attention as a promising environmentally friendly alternative. However, their progress has been hindered by insufficient bonding performance and weak solvent resistance, as well as the laborious synthesis processes involved. Herein, we successfully synthesized a high-performance lignin-based non-isocyanate adhesives (LNIPUs-G) through a one-pot strategy that combines the polycondensation of carbonate groups with polyether amines and aldehyde-amine chemistry. The former aspect circumvents the limitations associated with cyclic carbonate polyaddition while providing a molecular composition containing both rigid and flexible segments along with a high-density polar groups. Concurrently, the rapid hyperbranching process in the latter aspect significantly contributes to achieving a robust crosslinked network. As a result, the LNIPUs-G demonstrates exceptional resistance to boiling water with bond strengths of up to 1.32 MPa when applied to plywood, surpassing previously reported bio-based adhesives. Moreover, the adhesive exhibits remarkable versatility across a wide range of substrates including steel, iron, copper, carbon fiber reinforced composites, ceramics, aluminum, wood, and glass. Additionally, the adhesive has excellent resistance to an extensive range of organic solvents. Life cycle assessment (LCA) results demonstrate that the high-performance and cost-effective LNIPUs-G is expected to disrupt the dominance of bulk formaldehyde- and isocyanate-based adhesives industry.
Collapse
Affiliation(s)
- Jintao Zhang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jin Sun
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiaohong Zhou
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Rongxian Ou
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China; Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lichao Sun
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Chuigen Guo
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China; Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Qi Fan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Zhenzhong Gao
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
4
|
Dong Y, Abbasi A, Mohammadnejad S, Nasrollahzadeh M, Sheibani R, Otadi M. Recent progresses in bentonite/lignin or polysaccharide composites for sustainable water treatment. Int J Biol Macromol 2024; 278:134747. [PMID: 39151844 DOI: 10.1016/j.ijbiomac.2024.134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Today, with the growth of the human population, industrial activities have also increased. Different industries such as painting, cosmetics, leather, etc. have broadly developed, and as a result, they also produce a lot of pollutants. These pollutants can enter the environment and pollute water, air, and soil. Organic dyes, nitro compounds, drug residues, pesticides and herbicides are pollutants that should be removed from the environment. Natural polymers or biopolymers are important types of organic materials that are broadly applied for different applications. Among them, polysaccharides and lignin, which are two types of biopolymers, have attracted much consideration owing to their advantages such as biocompatibility, environmental friendly, safety, availability, etc. Polysaccharides include cellulose, gum, starch, alginate (Alg), chitin, and chitosan (CS). On the other hand, bentonite is one of the types of clays, which owing to their properties like large specific surface area, adsorption performance, naturally available, etc., have drawn the interest of many researchers. As a result, the synthesis of a composite including polysaccharide/lignin and bentonite can be very efficient for different applications, especially environmental ones. In this review, we instigated the preparation of these composites as well as the removal performance of them. In fact, we reported recent advancements in the synthesis of lignin- and polysaccharide-bentonite composites for the removal of diverse kinds of contaminants like organic dyes, nitro compounds, and hazardous materials.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Azadeh Abbasi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 3716146611, Iran
| | - Sepideh Mohammadnejad
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Iran
| | | | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | - Maryam Otadi
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Iran
| |
Collapse
|
5
|
Park CH, Kim MP. Advanced Triboelectric Applications of Biomass-Derived Materials: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1964. [PMID: 38730775 PMCID: PMC11084935 DOI: 10.3390/ma17091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
The utilization of triboelectric materials has gained considerable attention in recent years, offering a sustainable approach to energy harvesting and sensing technologies. Biomass-derived materials, owing to their abundance, renewability, and biocompatibility, offer promising avenues for enhancing the performance and versatility of triboelectric devices. This paper explores the synthesis and characterization of biomass-derived materials, their integration into triboelectric nanogenerators (TENGs), and their applications in energy harvesting, self-powered sensors, and environmental monitoring. This review presents an overview of the emerging field of advanced triboelectric applications that utilize the unique properties of biomass-derived materials. Additionally, it addresses the challenges and opportunities in employing biomass-derived materials for triboelectric applications, emphasizing the potential for sustainable and eco-friendly energy solutions.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Minsoo P. Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
6
|
Wang WY, Guo BX, Wang R, Liu HM, Qin Z. Revealing the structural changes of lignin in Chinese quince (Chaenomeles sinensis) fruit as it matures. Int J Biol Macromol 2024; 264:130718. [PMID: 38460651 DOI: 10.1016/j.ijbiomac.2024.130718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chinese quince fruits (Chaenomeles sinensis) contain substantial amounts of lignin; however, the exact structure of lignin remains to be investigated. In this study, milled wood lignins (Milled wood lignin (MWL)-1, MWL-2, MWL-3, MWL-4, MWL-5, and MWL-6) were extracted from fruits harvested once a month from May to October 2019 to investigate their structural evolution during fruit growth. The samples were characterized via High-performance anion exchange chromatography (HPAEC), Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), thermogravimetric (TGA), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and NMR (2D-heteronuclear single quantum coherence (HSQC) and 31P). The MWL samples in all fruit growth stages were GS-type lignin and lignin core undergoing minimal alterations during fruit development. The predominant linkage in the lignin structure was β-O-4', followed by β-β' and β-5'. Galactose and glucose were the main monosaccharides associated with MWL. In MWL-6, the lignin exhibited the highest homogeneity and thermal stability. As the fruit matured, a gradual increase in the β-O-4' proportion and the ratio of S/G was observed. The results provide comprehensive characterization of the cell wall lignin of quince fruit as it matures. This study could inspire innovative applications of quince fruit lignin and provide the optimal harvest time for lignin utilization.
Collapse
Affiliation(s)
- Wen-Yue Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bing-Xin Guo
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Rui Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
8
|
Sun SC, Sun SF, Xu Y, Wen JL, Yuan TQ. Green and sustainable production of high-purity lignin microparticles with well-preserved substructure and enhanced anti-UV/oxidant activity using peroxide-promoted alkaline deep eutectic solvent. Int J Biol Macromol 2023; 253:127057. [PMID: 37751817 DOI: 10.1016/j.ijbiomac.2023.127057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Deep eutectic solvents (DESs) have emerged as promising and eco-friendly solvents for the efficient extraction of lignin from biomass due to their low cost and environmental benefits. Nevertheless, the prevalent use of acidic DESs in lignin extraction often results in excessive depolymerization and recondensation of lignin, thereby impeding its downstream applications. In this study, we developed a range of alkaline DESs (ADESs), both pure and peroxide-containing, for the extraction of high-quality lignin from bamboo. Moreover, carbon dioxide (CO2) was employed for the precipitation and regeneration of the extracted lignin. The obtained lignin fractions were comprehensively characterized in terms of yield, purity, morphology, solubility, structural features, and anti-UV/oxidant activity. The results showed that the monoethanolamine-based ADES demonstrated superior performance among the pure ADESs. Structural analysis confirmed the well-preserved substructures of lignin fractions obtained using ADESs, with β-O-4 bond retention ranging from 49.8 % to 68.4 %. The incorporation of a suitable amount of peroxide improved lignin yield, morphology, solubility, and anti-UV/oxidant activity. Additionally, the anti-UV/oxidant activity of lignin exhibited a positive correlation with its phenolic hydroxyl content. This study provides a valuable reference for the green and sustainable production and valorization of lignin within the existing biorefinery framework.
Collapse
Affiliation(s)
- Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Fei Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Jaimes-Paez CD, García-Mateos FJ, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T, Morallón E, Cazorla-Amorós D. Sustainable Synthesis of Metal-Doped Lignin-Derived Electrospun Carbon Fibers for the Development of ORR Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2921. [PMID: 37999275 PMCID: PMC10674835 DOI: 10.3390/nano13222921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
The aim of this work is to establish the Oxygen Reduction Reaction (ORR) activity of self-standing electrospun carbon fiber catalysts obtained from different metallic salt/lignin solutions. Through a single-step electrospinning technique, freestanding carbon fiber (CF) electrodes embedded with various metal nanoparticles (Co, Fe, Pt, and Pd), with 8-16 wt% loadings, were prepared using organosolv lignin as the initial material. These fibers were formed from a solution of lignin and ethanol, into which the metallic salt precursors were introduced, without additives or the use of toxic reagents. The resulting non-woven cloths were thermostabilized in air and then carbonized at 900 °C. The presence of metals led to varying degrees of porosity development during carbonization, improving the accessibility of the electrolyte to active sites. The obtained Pt and Pd metal-loaded carbon fibers showed high nanoparticle dispersion. The performance of the electrocatalyst for the oxygen reduction reaction was assessed in alkaline and acidic electrolytes and compared to establish which metals were the most suitable for producing carbon fibers with the highest electrocatalytic activity. In accordance with their superior dispersion and balanced pore size distribution, the carbon fibers loaded with 8 wt% palladium showed the best ORR activity, with onset potentials of 0.97 and 0.95 V in alkaline and acid media, respectively. In addition, this electrocatalyst exhibits good stability and selectivity for the four-electron energy pathway while using lower metal loadings compared to commercial catalysts.
Collapse
Affiliation(s)
- Cristian Daniel Jaimes-Paez
- Departamento de Química Física, Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080 Alicante, Spain; (C.D.J.-P.); (E.M.)
| | - Francisco José García-Mateos
- Departamento de Ingeniería Química, Andalucía Tech, University of Malaga, Campus de Teatinos s/n, 29010 Malaga, Spain; (F.J.G.-M.); (J.R.-M.); (T.C.)
| | - Ramiro Ruiz-Rosas
- Departamento de Ingeniería Química, Andalucía Tech, University of Malaga, Campus de Teatinos s/n, 29010 Malaga, Spain; (F.J.G.-M.); (J.R.-M.); (T.C.)
| | - José Rodríguez-Mirasol
- Departamento de Ingeniería Química, Andalucía Tech, University of Malaga, Campus de Teatinos s/n, 29010 Malaga, Spain; (F.J.G.-M.); (J.R.-M.); (T.C.)
| | - Tomás Cordero
- Departamento de Ingeniería Química, Andalucía Tech, University of Malaga, Campus de Teatinos s/n, 29010 Malaga, Spain; (F.J.G.-M.); (J.R.-M.); (T.C.)
| | - Emilia Morallón
- Departamento de Química Física, Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080 Alicante, Spain; (C.D.J.-P.); (E.M.)
| | - Diego Cazorla-Amorós
- Departamento de Química Inorgánica, Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Ap. 99, 03080 Alicante, Spain
| |
Collapse
|
10
|
Zhou L, You X, Wang L, Qi S, Wang R, Uraki Y, Zhang H. Fabrication of Graphitized Carbon Fibers from Fusible Lignin and Their Application in Supercapacitors. Polymers (Basel) 2023; 15:1947. [PMID: 37112094 PMCID: PMC10142849 DOI: 10.3390/polym15081947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Lignin-based carbon fibers (LCFs) with graphitized structures decorated on their surfaces were successfully prepared using the simultaneous catalyst loading and chemical stabilization of melt-spun lignin fibers, followed by quick carbonization functionalized as catalytic graphitization. This technique not only enables surficial graphitized LCF preparation at a relatively low temperature of 1200 °C but also avoids additional treatments used in conventional carbon fiber production. The LCFs were then used as electrode materials in a supercapacitor assembly. Electrochemical measurements confirmed that LCF-0.4, a sample with a relatively low specific surface area of 89.9 m2 g-1, exhibited the best electrochemical properties. The supercapacitor with LCF-0.4 had a specific capacitance of 10.7 F g-1 at 0.5 A g-1, a power density of 869.5 W kg-1, an energy density of 15.7 Wh kg-1, and a capacitance retention of 100% after 1500 cycles, even without activation.
Collapse
Affiliation(s)
- Linfei Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Xiangyu You
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Lingjie Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Shijie Qi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Ruichen Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| | - Yasumitsu Uraki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Huijie Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (L.Z.)
| |
Collapse
|
11
|
Wu KL, Zhang WW, Jiang TB, Wu M, Liu W, Wang HM, Hou QX. Structure regulated 3D flower-like lignin-based anode material for lithium-ion batteries and its storage kinetics. Int J Biol Macromol 2023; 227:146-157. [PMID: 36529218 DOI: 10.1016/j.ijbiomac.2022.12.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
As a green sustainable material, lignin-derived porous carbon (LPC) exhibits great application potential when used as the anode material in lithium-ion batteries (LIBs), but the applications are limited by the heterogeneity of the lignin precursor. Therefore, it is crucial to reveal the relationship among lignin properties, porous carbon structure and the kinetics of lithium-ion storage. Herein, LPCs from fractionated lignin have been prepared by an eco-friendly and recyclable activator. The structure of the LPCs was regulated by adjusting the molecular weight, linkage abundance and glass transition temperature (Tg) of lignin macromolecules. As the anode material of LIBs, the prepared 3D flower-like LPCE70 could achieve a reversible capacity of 528 mAh g-1 at a current density of 0.2 A g-1 after 200 cycles, 63 % higher than that of commercial graphite. Furthermore, kinetic calculations of lithium-ion storage behavior of LPCs were firstly used to confirm the contribution ratio of diffusion-controlled behavior and capacitive effect. Lignin with a high linkage abundance could yield LPCE70 with the largest interlayer spacing and specific surface area to maximize lithium-ion storage from both diffusion-controlled and capacitive contributions of specific capacities. This work provides a green, facile and effective pathway for value-added utilization of lignin in LIBs.
Collapse
Affiliation(s)
- Kai-Li Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tong-Bao Jiang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ming Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Han-Min Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qing-Xi Hou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Collaborative catalysis for solar biosynthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Bhakta AK, Fiorenza R, Jlassi K, Mekhalif Z, Ali AMA, Chehimi MM. The emerging role of biochar in the carbon materials family for hydrogen production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Jin X, Liu X, Li X, Du L, Su L, Ma Y, Ren S. High lignin, light-driven shape memory polymers with excellent mechanical performance. Int J Biol Macromol 2022; 219:44-52. [PMID: 35905766 DOI: 10.1016/j.ijbiomac.2022.07.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
With the gradual global standardization of carbon emission policies, the development of renewable resources to replace traditional fossil resources is assuming increasing importance. Lignin is the most abundant natural source of aromatic compounds and has the potential to replace petroleum-based aromatic hydrocarbons. In this work, the rigid benzene ring structure and excellent photothermal properties of lignin were exploited to produce light-driven lignin-based shape memory polymers (ELEPs) that contain high proportions of lignin and have good mechanical properties. Enzymatically hydrolyzed lignin (EL), epoxy soybean oil (ESO) and polyethylene glycol (PEG 400) were copolymerized and cured to form ELEPs, which have a disordered three-dimensional network. An increase in the proportion of EL from 40 to 60 wt% enhanced the mechanical properties, as reflected by an increase in tensile strength from 11.3 to 30.8 MPa and in the glass transition temperature (Tg) from 93 to 115.7 °C. Under simulated solar irradiation (2000 W m-2), ELEP50, which contains 50 wt% lignin and has a Tg of 105 °C, reached a surface temperature as high as 105 °C and achieved shape memory within 20 s. The shape fixation ratio (Rf) and shape recovery ratio (Rr) were stably >98 % and >97 %, respectively, over eight cycles in a bending-recovery experiment. The unique light-driven shape memory properties of ELEPs provide a method for high value utilization of EL, and the design strategy offers new ideas for producing novel intelligent materials.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Xuan Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Xiaowen Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Liuping Du
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Ling Su
- Yantai Vocational College, Yantai City 264670, PR China
| | - Yanli Ma
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Shixue Ren
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
15
|
Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr Polym 2022; 287:119349. [DOI: 10.1016/j.carbpol.2022.119349] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
|
16
|
Functionalized Alkaline Lignin for Removal of Lead in Aqueous Solution. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.5.192-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lignin, the second most abundant natural polymeric globally, is considered the source of the renewable aromatic compound. It serves as an alternative feedstock for the elaboration of chemicals and polymers. However, even until now, it is still primarily used as a low-value fuel for boilers. In the current research, alkaline lignin was modified and used as an adsorbent for removing lead (Pb) in an aqueous solution. The functionalized alkaline lignin (FAL) was prepared by a Mannich reaction with formaldehyde and dimethylamine, followed by esterification of carbon disulfide. The FAL was characterized using CHN elemental analysis, X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared (FT-IR) to observe the changes in composition, morphology, and chemical structure. The analysis revealed that alkaline lignin was successfully modified using amine and carbon disulfide. The adsorption study shows that the lead concentration reduced to 93.7% after 2 hours in contact with FAL. The FAL adsorption capacity could obtain 0.44 mmol/g of lead.
Collapse
|
17
|
Kim J, Um Y, Han S, Hilberath T, Kim YH, Hollmann F, Park CB. Unbiased Photoelectrode Interfaces for Solar Coupling of Lignin Oxidation with Biocatalytic C═C Bond Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11465-11473. [PMID: 35196006 DOI: 10.1021/acsami.1c24342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pulp and paper manufacturers generate approximately 50 million metric tons of lignin per annum, most of which has been abandoned or incinerated because of lignin's recalcitrant nature. Here, we report bias-free photoelectrochemical (PEC) oxidation of lignin coupled with asymmetric hydrogenation of C═C bonds. The PEC platform consists of a hematite (α-Fe2O3) photoanode and a silicon photovoltaic-wired mesoporous indium tin oxide (Si/mesoITO) photocathode. We substantiate a new function of photoelectroactivated α-Fe2O3 to extract electrons from lignin. The extracted electrons are transferred to the Si/mesoITO photocathode for regenerating synthetic nicotinamide cofactor analogues (mNADHs). We demonstrate that the reduction kinetics of mNAD+s depend on their reduction peak potentials. The regenerated mNADHs activate ene-reductases from the old yellow enzyme (OYE) family, which catalyze enantioselective reduction of α,β-unsaturated hydrocarbons. This lignin-fueled biocatalytic PEC system exhibits an excellent OYE's turnover frequency and total turnover number for photobiocatalytic trans-hydrogenation through cofactor regeneration. This work presents the first example of PEC regeneration of mNADHs and opens up a sustainable route for bias-free chemical synthesis using renewable lignin waste as an electron feedstock.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Yunna Um
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Seunghyun Han
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Thomas Hilberath
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
18
|
Zhang X, Jian W, Zhao L, Wen F, Chen J, Yin J, Qin Y, Lu K, Zhang W, Qiu X. Direct carbonization of sodium lignosulfonate through self-template strategies for the synthesis of porous carbons toward supercapacitor applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128191] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Wang D, Kim J, Park CB. Lignin-Induced CaCO 3 Vaterite Structure for Biocatalytic Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58522-58531. [PMID: 34851105 DOI: 10.1021/acsami.1c16661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vaterite phase of CaCO3 exhibits unique characteristics, such as high porosity, surface area, dispersivity, and low specific gravity, but it is the most unstable polymorph. Here, we report lignin-induced stable vaterite as a support matrix for integrated artificial photosynthesis through the encapsulation of key active components such as the photosensitizer (eosin y, EY) and redox enzyme (l-glutamate dehydrogenase, GDH). The lignin-vaterite/EY/GDH photobiocatalytic platform enabled the regeneration of the reduced nicotinamide cofactor under visible light and facilitated the rapid conversion of α-ketoglutarate into l-glutamate (initial conversion rate, 0.41 mM h-1; turnover frequency, 1060 h-1; and turnover number, 39,750). The lignin-induced vaterite structure allowed for long-term protection and recycling of the active components while facilitating the photosynthesis reaction due to the redox-active lignin. Succession of stability tests demonstrated a significant improvement of GDH's robustness in the lignin-vaterite structure against harsh environments. This work provides a simple approach for solar-to-chemical conversion using a sustainable, integrated light-harvesting system.
Collapse
Affiliation(s)
- Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
20
|
Zhang W, Yin J, Wang C, Zhao L, Jian W, Lu K, Lin H, Qiu X, Alshareef HN. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. SMALL METHODS 2021; 5:e2100896. [PMID: 34927974 DOI: 10.1002/smtd.202100896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Indexed: 05/12/2023]
Abstract
Lignin, one of the renewable constituents in natural plant biomasses, holds great potential as a sustainable source of functional carbon materials. Tremendous research efforts have been made on lignin-derived carbon electrodes for rechargeable batteries. However, lignin is considered as one of the most promising carbon precursors for the development of high-performance, low-cost porous carbon electrode materials for supercapacitor applications. Yet, these efforts have not been reviewed in detail in the current literature. This review, therefore, offers a basis for the utilization of lignin as a pivotal precursor for the synthesis of porous carbons for use in supercapacitor electrode applications. Lignin chemistry, the synthesis process of lignin-derived porous carbons, and future directions for developing better porous carbon electrode materials from lignin are systematically reviewed. Technological hurdles and approaches that should be prioritized in future research are presented.
Collapse
Affiliation(s)
- Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Caiwei Wang
- School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Tianhe District, Guangzhou, 510640, China
| | - Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Haibo Lin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Yu Y, Naik SS, Oh Y, Theerthagiri J, Lee SJ, Choi MY. Lignin-mediated green synthesis of functionalized gold nanoparticles via pulsed laser technique for selective colorimetric detection of lead ions in aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126585. [PMID: 34273885 DOI: 10.1016/j.jhazmat.2021.126585] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 05/20/2023]
Abstract
A versatile green synthesis technique of pulsed laser irradiation and the sonochemical process was used for the production of functionalized gold nanoparticles (Au NPs) in the presence of lignin matrixes. In this study, the futuristic advantages of the lignin biopolymer were explored for the preparation of zero-valent Au NPs in the absence of any other reducing agents. The resulting lignin functionalized Au NPs (L-Auf NPs) were characterized via high-resolution transmission electron microscopy, X-ray diffraction, UV-vis spectroscopy, and Fourier-transform infrared spectroscopy. The optimum lignin concentration can generate uniformly dispersed crystalline L-Auf NPs. The optimized L-Auf (1-5) NPs permit the selective colorimetric detection of heavy metal ions; thus, the L-Auf (1-5) NPs demonstrated a highly selective colorimetric sensing tendency toward Pb2+ ions within a short time interval among the various metal ions (Pb2+, Fe3+, Cu2+, Cr6+, Co2+, Ag2+, Ca2+, Cd2+, Ba2+, and Hg2+). The prominent color change of L-Auf NPs from red wine to purple indicates the detection of Pb2+ ions. This robust characteristic nature of L-Auf (1-5) NPs can also detect very low concentrations of 1.8 μM in the linear range of 0.1-1 mM. Hence, the outcome of this study coincides with existing studies and indicates that L-Auf (1-5) NPs can also be used as effective sensors for the rapid and selective detection of Pb2+ ions via the colorimetric analysis using the real environmental samples.
Collapse
Affiliation(s)
- Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Shreyanka Shankar Naik
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Yewon Oh
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
22
|
Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OJ, Puglia D. Multifunctional lignin-based nanocomposites and nanohybrids. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6698-6760. [PMID: 34671223 PMCID: PMC8452181 DOI: 10.1039/d1gc01684a] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Significant progress in lignins valorization and development of high-performance sustainable materials have been achieved in recent years. Reports related to lignin utilization indicate excellent prospects considering green chemistry, chemical engineering, energy, materials and polymer science, physical chemistry, biochemistry, among others. To fully realize such potential, one of the most promising routes involves lignin uses in nanocomposites and nanohybrid assemblies, where synergistic interactions are highly beneficial. This review first discusses the interfacial assembly of lignins with polysaccharides, proteins and other biopolymers, for instance, in the synthesis of nanocomposites. To give a wide perspective, we consider the subject of hybridization with metal and metal oxide nanoparticles, as well as uses as precursor of carbon materials and the assembly with other biobased nanoparticles, for instance to form nanohybrids. We provide cues to understand the fundamental aspects related to lignins, their self-assembly and supramolecular organization, all of which are critical in nanocomposites and nanohybrids. We highlight the possibilities of lignin in the fields of flame retardancy, food packaging, plant protection, electroactive materials, energy storage and health sciences. The most recent outcomes are evaluated given the importance of lignin extraction, within established and emerging biorefineries. We consider the benefit of lignin compared to synthetic counterparts. Bridging the gap between fundamental and application-driven research, this account offers critical insights as far as the potential of lignin as one of the frontrunners in the uptake of bioeconomy concepts and its application in value-added products.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Life Cycle Thinking group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU) Bilbao 48013 Spain
- BCMaterials, Basque Center Centre for Materials, Applications and Nanostructures UPV/EHU Science Park 48940 Leioa Spain
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Mikhail Balakshin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, and Department of Wood Science, University of British Columbia 2360 East Mall Vancouver BC V6T 1Z4 Canada
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia Strada di Pentima 4 05100 Terni Italy
| |
Collapse
|
23
|
Baloch M, Labidi J. Lignin biopolymer: the material of choice for advanced lithium-based batteries. RSC Adv 2021; 11:23644-23653. [PMID: 35479805 PMCID: PMC9036608 DOI: 10.1039/d1ra02611a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Lignin, an aromatic polymer, offers interesting electroactive redox properties and abundant active functional groups. Due to its quinone functionality, it fulfils the requirement of erratic electrical energy storage by only providing adequate charge density. Research on the use of lignin as a renewable material in energy storage applications has been published in the form of reviews and scientific articles. Lignin has been used as a binder, polymer electrolyte and an electrode material, i.e. organic composite electrodes/hybrid lignin-polymer combination in different battery systems depending on the principal charge of quinone and hydroquinone. Furthermore, lignin-derived carbons have gained much popularity. The aim of this review is to depict the meticulous follow-ups of the vital challenges and progress linked to lignin usage in different lithium-based conventional and next-generation batteries as a valuable, ecological and low-cost material. The key factor of this new finding is to open a new path towards sustainable and renewable future lithium-based batteries for practical/industrial applications.
Collapse
Affiliation(s)
- Marya Baloch
- Department of Chemical and Environmental Engineering, School of Engineering Donostia-San Sebastian Gipuzkoa Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, School of Engineering Donostia-San Sebastian Gipuzkoa Spain
| |
Collapse
|
24
|
Abstract
Bio-based lignin-like building blocks were synthesized and transformed into polyurethane nanocarriers by interfacial polymerization in a miniemulsion. The nanocarriers were degradable by fungal enzymes and might be used for agrochemical delivery.
Collapse
Affiliation(s)
- Sebastian J. Beckers
- Max-Planck-Institut für Polymerforschung (MPIP), Ackermannweg 10, 55128 Mainz, Germany
| | - Jochen Fischer
- IBWF gGmbH, Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
25
|
Barhoum A, Jeevanandam J, Rastogi A, Samyn P, Boluk Y, Dufresne A, Danquah MK, Bechelany M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. NANOSCALE 2020; 12:22845-22890. [PMID: 33185217 DOI: 10.1039/d0nr04795c] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A huge variety of plants are harvested worldwide and their different constituents can be converted into a broad range of bionanomaterials. In parallel, much research effort in materials science and engineering is focused on the formation of nanoparticles and nanostructured materials originating from agricultural residues. Cellulose (40-50%), hemicellulose (20-40%), and lignin (20-30%) represent major plant ingredients and many techniques have been described that separate the main plant components for the synthesis of nanocelluloses, nano-hemicelluloses, and nanolignins with divergent and controllable properties. The minor components, such as essential oils, could also be used to produce non-toxic metal and metal oxide nanoparticles with high bioavailability, biocompatibility, and/or bioactivity. This review describes the chemical structure, the physical and chemical properties of plant cell constituents, different techniques for the synthesis of nanocelluloses, nanohemicelluloses, and nanolignins from various lignocellulose sources and agricultural residues, and the extraction of volatile oils from plants as well as their use in metal and metal oxide nanoparticle production and emulsion preparation. Furthermore, details about the formation of activated carbon nanomaterials by thermal treatment of lignocellulose materials, a few examples of mineral extraction from agriculture waste for nanoparticle fabrication, and the emerging applications of plant-based nanomaterials in different fields, such as biotechnology and medicine, environment protection, environmental remediation, or energy production and storage, are also included. This review also briefly discusses the recent developments and challenges of obtaining nanomaterials from plant residues, and the issues surrounding toxicity and regulation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ponnuchamy V, Gordobil O, Diaz RH, Sandak A, Sandak J. Fractionation of lignin using organic solvents: A combined experimental and theoretical study. Int J Biol Macromol 2020; 168:792-805. [PMID: 33242547 DOI: 10.1016/j.ijbiomac.2020.11.139] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Refining of industrial lignin to produce homogeneous fractions is essential for high-value applications. However, the understanding of key interactions between a variety of solvents with lignin polymer is still uncertain. In this work, single-step fractionation of industrial hardwood kraft lignin (HKL) using organic solvents of different polarities - ethanol, acetone, diethyl ether and hexane - was investigated by combining an experimental and theoretical approach. Experimental results revealed that higher polarity solvents (ethanol and acetone) exhibited higher solubility yield compared to moderate and low polarity solvents. The chemical differences between lignin fractions were proven by pyrolysis gas chromatography mass spectrometry and near infrared spectroscopy. Density functional theory (DFT) results indicated that ethanol presented higher interaction energy followed by acetone, diethyl ether and hexane, which was consistent with experimental findings. Hydrogen bond and non-covalent interaction results from DFT demonstrated that the predominant interaction was found for high polarity of ethanol over other solvents and γ-OH in the lignin model is the key site.
Collapse
Affiliation(s)
- Veerapandian Ponnuchamy
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; University of Primorska, Andrej Marušič Institute, Titov trg 4, 6000 Koper, Slovenia.
| | | | - René Herrera Diaz
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; Chemical and Environmental Engineering Department, University of the Basque Country, San Sebastian, Spain
| | - Anna Sandak
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia
| | - Jakub Sandak
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; University of Primorska, Andrej Marušič Institute, Titov trg 4, 6000 Koper, Slovenia
| |
Collapse
|
27
|
Xu J, Li C, Dai L, Xu C, Zhong Y, Yu F, Si C. Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. CHEMSUSCHEM 2020; 13:4284-4295. [PMID: 32672385 DOI: 10.1002/cssc.202001491] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Indexed: 05/12/2023]
Abstract
Lignin, as the most abundant aromatic biopolymer in nature, has attracted great attention due to the complexity and richness of its functional groups for value-added applications. The yield of production of lignin and the reactivity of prepared lignin are very important to guarantee the study and development of lignin-based chemicals and materials. Various fractionation techniques have been developed to obtain high yield and relatively high-purity lignin as well as carbohydrates (hemicelluloses and celluloses) and to reduce the condensed and degraded nature of conventional biorefinery lignin. Herein, novel and efficient biomass fractionation and lignin fractionation towards lignin valorization are summarized and discussed.
Collapse
Affiliation(s)
- Jiayun Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi, Turku FI, 20500, Finland
| | - Chenyu Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, No. 1 at Dali road, Tianjin, 300050, P. R. China
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi, Turku FI, 20500, Finland
| | - Yongda Zhong
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| | - Faxin Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| |
Collapse
|