1
|
Ji X, Lu Y, Chen X. Catalytic conversion of chitin biomass into key platform chemicals. Chem Commun (Camb) 2025; 61:1303-1321. [PMID: 39688066 DOI: 10.1039/d4cc05078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Chitin is the most abundant nitrogen-containing biomass on Earth and presents a compelling alternative to fossil fuels for chemical production. The catalytic conversion of chitin offers a viable approach for harnessing its inherent carbon and nitrogen contents, contributing to developing a green and sustainable society. This feature article reviews recent advances in shell waste biorefinery, with an emphasis on the contributions from our group. Efficient and sustainable chitin extraction methods are highlighted, along with the conversion of chitin biomass (N-acetyl-D-glucosamine (NAG), D-glucosamine, chitosan, and chitin) into key platform chemicals, mainly including furans, amino/amide sugars, organic acids and amino/amide acids. Catalytic strategies and production pathways are detailed, and current challenges and future research directions in chitin valorization are discussed.
Collapse
Affiliation(s)
- Xinlei Ji
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China.
| | - Yichang Lu
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China.
| | - Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China.
| |
Collapse
|
2
|
Huang H, Liu S, Guo X, Jiang H, Cai Y, Tan Z, Zhou G, Cai X, Zhuang M, Xie S. Sustainable ammonia and amines from chitin. BIORESOURCE TECHNOLOGY 2024; 414:131582. [PMID: 39384048 DOI: 10.1016/j.biortech.2024.131582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Efforts are underway to explore alternative methods to the Haber-Bosch process for sustainable ammonia production, while the potential for ammonia extraction from natural nitrogenous biomass is under-exploited. Here, a synergistic catalytic strategy involving acid and modified Ru-based catalysts is communicated for the direct production of amines and ammonia from chitin. Phosphoric acid promotes the cleavage of ether bonds in biomass polymers and also serves to protect amino groups from being removed. Selective hydrogenation, deoxygenation, and amination can be achieved by controllably adjusting the ratio of Ru0/Run+. The utilization of nitrogen atoms in chitin can reach up to 95 % (21 % amines, 74 % ammonium), and the catalytic process is applicable to waste shrimp shells. This study demonstrates the possibility of efficient production of nitrogen-containing compounds from abundant biopolymers.
Collapse
Affiliation(s)
- Hao Huang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengyao Liu
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xucong Guo
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huoyan Jiang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yihong Cai
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zixuan Tan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guangping Zhou
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaolan Cai
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Min Zhuang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoqu Xie
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China.
| |
Collapse
|
3
|
Ji X, Zhao Y, Lui MY, Mika LT, Chen X. Catalytic conversion of chitin-based biomass to nitrogen-containing chemicals. iScience 2024; 27:109857. [PMID: 38784004 PMCID: PMC11112376 DOI: 10.1016/j.isci.2024.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The exploration of renewable alternatives to fossil fuels for chemical production is indispensable to achieve the ultimate goals of sustainable development. Chitin biomass is an abundant platform feedstock that naturally bears both nitrogen and carbon atoms to produce nitrogen-containing chemicals (including organonitrogen ones and inorganic ammonia). The expansion of biobased chemicals toward nitrogen-containing ones can elevate the economic competitiveness and benefit the biorefinery scheme. This review aims to provide an up-to-date summary on the overall advances of the chitin biorefinery for nitrogen-containing chemical production, with an emphasis on the design of the catalytic systems. Catalyst design, solvent selection, parametric effect, and reaction mechanisms have been scrutinized for different transformation strategies. Future prospectives on chitin biorefinery have also been outlined.
Collapse
Affiliation(s)
- Xinlei Ji
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China
| | - Yufeng Zhao
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China
| | - Matthew Y. Lui
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong
| | - László T. Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China
| |
Collapse
|
4
|
Yamazaki K, Hiyoshi N, Yamaguchi A. Conversion of N-Acetylglucosamine to 3-Acetamido-5-Acetylfuran over Al-Exchanged Montmorillonite. ChemistryOpen 2023; 12:e202300148. [PMID: 37988701 PMCID: PMC10695736 DOI: 10.1002/open.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Indexed: 11/23/2023] Open
Abstract
3-Acetamido-5-acetylfuran (3A5AF) is a potential platform compound for the production of nitrogen-containing pharmaceuticals and chemicals. 3A5AF can be obtained by dehydration of chitin or its monomer, N-acetylglucosamine (NAG). Here, we examined the use of solid catalysts for the dehydration of NAG to 3A5AF to achieve a more economical process that uses a recyclable catalyst. NAG was dehydrated using various solid catalysts in the presence of NaCl and N,N-dimethyl acetamide as solvent at 433 K. The yield of 3A5AF with the solid catalysts decreased in the following order: Al-exchanged montmorillonite>H-ZSM-5 (SiO2 /Al2 O3 =40)>H-montmorillonite (K-10)>Amberlyst15>H-ZSM-5 (SiO2 /Al2 O3 =300)>TiO2 >γ-Al2 O3 >ZrO2 >SiO2 ⋅ MgO>Na-montmorillonite. The highest yield of 3A5AF (14 %) was obtained with the Al-exchanged montmorillonite. The montmorillonite catalysts were characterized by using inductively coupled plasma optical emission spectroscopy, energy-dispersive X-ray spectroscopy, N2 adsorption, Fourier-transformed infrared spectroscopy, X-ray diffraction, and 27 Al magic-angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR). In addition, a combined catalyst of Al-exchanged montmorillonite and Cl- from synthetic hydrotalcite was found to be an active and recyclable solid catalyst for NAG dehydration to 3A5AF.
Collapse
Affiliation(s)
- Kiyoyuki Yamazaki
- Research Institute for Chemical Process TechnologyNational Institute of Advanced Industrial Science and Technology (AIST)4-2-1 Nigatake, Miyagino983-8551SendaiJapan
| | - Norihito Hiyoshi
- Research Institute for Chemical Process TechnologyNational Institute of Advanced Industrial Science and Technology (AIST)4-2-1 Nigatake, Miyagino983-8551SendaiJapan
| | - Aritomo Yamaguchi
- Research Institute for Chemical Process TechnologyNational Institute of Advanced Industrial Science and Technology (AIST)4-2-1 Nigatake, Miyagino983-8551SendaiJapan
| |
Collapse
|
5
|
Lin C, Yang H, Gao X, Zhuang Y, Feng C, Wu H, Gan H, Cao F, Wei P, Ouyang P. Biomass to Aromatic Amine Module: Alkali Catalytic Conversion of N-Acetylglucosamine into Unsubstituted 3-Acetamidofuran by Retro-Aldol Condensation. CHEMSUSCHEM 2023:e202300133. [PMID: 36878862 DOI: 10.1002/cssc.202300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Aminofurans are widely used in drug synthesis as aromatic modules analogous to aniline. However, unsubstituted aminofuran compounds are difficult to prepare. In this study, a process for the selective conversion of N-acetyl-d-glucosamine (NAG) into unsubstituted 3-acetamidofuran (3AF) is developed. The yield of 3AF from NAG catalyzed by a ternary Ba(OH)2 -H3 BO3 -NaCl catalytic system in N-methylpyrrolidone at 180 °C for 20 min can reach 73.9 %. Mechanistic studies reveal that the pathway to 3AF starts with a base-promoted retro-aldol condensation of the ring-opened NAG, affording the key intermediate N-acetylerythrosamine. Judicious selection of the catalyst system and conditions enables the selective conversion of biomass-derived NAG into 3AF or 3-acetamido-5-acetylfuran.
Collapse
Affiliation(s)
- Changqu Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hao Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xin Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yue Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Caojian Feng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hongli Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Haifeng Gan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Fei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
6
|
van der Loo CHM, Schim van der Loeff R, Martín A, Gomez-Sal P, Borst MLG, Pouwer K, Minnaard AJ. π-Facial selectivity in the Diels-Alder reaction of glucosamine-based chiral furans and maleimides. Org Biomol Chem 2023; 21:1888-1894. [PMID: 36607338 DOI: 10.1039/d2ob02221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Furans derived from carbohydrate feedstocks are a versatile class of bio-renewable building blocks and have been used extensively to access 7-oxanorbornenes via Diels-Alder reactions. Due to their substitution patterns these furans typically have two different π-faces and therefore furnish racemates in [4 + 2]-cycloadditions. We report the use of an enantiopure glucosamine derived furan that under kinetic conditions predominantly affords the exo-product with a high π-face selectivity of 6.5 : 1. The structure of the product has been resolved unequivocally by X-ray crystallography, and a multi-gram synthesis (2.8 g, 58% yield) confirms the facile accessibility of this multifunctional enantiopure building block.
Collapse
Affiliation(s)
- Cornelis H M van der Loo
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Rutger Schim van der Loeff
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Avelino Martín
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
| | - Pilar Gomez-Sal
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
| | - Mark L G Borst
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Kees Pouwer
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Wang K, Xiao Y, Wu C, Feng Y, Liu Z, Zhu X, Zang H. Direct conversion of chitin derived N-acetyl-D-glucosamine into 3-acetamido-5-acetylfuran in deep eutectic solvents. Carbohydr Res 2023; 524:108742. [PMID: 36716693 DOI: 10.1016/j.carres.2023.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
3-Acetylamino-5-acetylfuran (3A5AF) is an important nitrogen-containing fine chemical with broad application prospects and high research value. Herein, we report a novel method for the conversion of N-acetyl-d-glucosamine (NAG) to 3A5AF in the choline chloride-based deep eutectic solvents (DESs). The catalytic activities of various DESs have been smoothly screened, and DES 2 (choline chloride/PEG-200/boronic acid = 1/1/0.5) displayed the best catalytic performance. In the absence of any additional solvent, catalyst and additive, product 3A5AF was obtained in 18.3% yield after reacting at 180 °C for 15 min under atmospheric condition. In addition, DES 2 showed a good reusability. The possible reaction pathway was elucidated on the basis of the results of LC-MS and 13C NMR spectra. This study provided a new perspective for the application of DES in the conversion of chitin biomass.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, China
| | - Yunfei Xiao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, China
| | - Changchun Wu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, China
| | - Yimo Feng
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, China
| | - Zhipeng Liu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, China
| | - Xi Zhu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, China
| | - Hongjun Zang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, China.
| |
Collapse
|
8
|
Zang H, Feng Y, Zhang M, Wang K, Du Y, Lv Y, Qin Z, Xiao Y. Valorization of chitin biomass into N-containing chemical 3-acetamido-5-acetylfuran catalyzed by simple Lewis acid. Carbohydr Res 2022; 522:108679. [DOI: 10.1016/j.carres.2022.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
|
9
|
Pappalardo V, Remadi Y, Cipolla L, Scotti N, Ravasio N, Zaccheria F. Fishery waste valorization: Sulfated ZrO2 as a heterogeneous catalyst for chitin and chitosan depolymerization. Front Chem 2022; 10:1057461. [DOI: 10.3389/fchem.2022.1057461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Chitin and chitosan are abundant unique sources of biologically-fixed nitrogen mainly derived from residues of the fishery productive chain. Their high potential as nitrogen-based highly added-value platform molecules is still largely unexploited and a catalytic way for their valorization would be strongly desirable within a biorefinery concept. Here we report our results obtained with a series of heterogeneous catalysts in the depolymerization of chitosan and chitin to acetylglucosamine. Copper catalysts supported on SiO2, SiO2–Al2O3, SiO2-ZrO2, ZrO2 and the corresponding bare oxides/mixed oxides were tested, together with a sulfated zirconia system (ZrO2-SO3H) that revealed to be extremely selective towards glucosamine, both for chitosan and chitin, thus giving pretty high yields with respect to the values reported so far (44% and 21%, respectively). The use of a heterogeneous catalyst alone, without the need of any additives or the combination with a mineral acid, makes these results remarkable.
Collapse
|
10
|
Zang H, Feng Y, Lou J, Wang K, Wu C, Liu Z, Zhu X. Synthesis and performance of piperidinium-based ionic liquids as catalyst for biomass conversion into 3-acetamido-5-acetylfuran. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Neville JC, Lau MY, Söhnel T, Sperry J. Haber-independent, asymmetric synthesis of the marine alkaloid epi-leptosphaerin from a chitin-derived chiral pool synthon. Org Biomol Chem 2022; 20:6562-6565. [PMID: 35903995 DOI: 10.1039/d2ob01251k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitin-derived platforms are emerging as valuable chemical entities for the construction of nitrogenous fine chemicals in processes independent of Haber ammonia. However, much of the work in this area has focused on achiral platforms that limit routine entry into enantiopure, bio-based N-chemical space. Herein, dihydroxyethyl acetamidofuran (Di-HAF), a chiral synthon readily available from chitin, has been transformed into the marine alkaloid epi-leptosphaerin. This work extends the fledgling Haber-independent synthesis concept to enantiopure chemical space not routinely accessible from existing achiral platforms.
Collapse
Affiliation(s)
- Jessica C Neville
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Michelle Y Lau
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Tilo Söhnel
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
12
|
Progress in Catalytic Conversion of Renewable Chitin Biomass to Furan-Derived Platform Compounds. Catalysts 2022. [DOI: 10.3390/catal12060653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chitin is one of the most abundant biopolymers on Earth but under-utilized. The effective conversion of chitin biomass to useful chemicals is a promising strategy to make full use of chitin. Among chitin-derived compounds, some furan derivatives, typically 5-hydroxymethylfurfural and 3-acetamido-5-acetylfuran, have shown great potential as platform compounds in future industries. In this review, different catalytic systems for the synthesis of nitrogen-free 5-hydroxymethylfurfural and nitrogen-containing 3-acetamido-5-acetylfuran from chitin or its derivatives are summarized comparatively. Some efficient technologies for enhancing chitin biomass conversion have been introduced. Last but not least, future challenges are discussed to enable the production of valuable compounds from chitin biomass via greener processes.
Collapse
|
13
|
Sagawa T, Kobayashi H, Murata C, Shichibu Y, Konishi K, Hashizume M, Fukuoka A. Catalytic Synthesis of Oxazolidinones from a Chitin-Derived Sugar Alcohol. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuya Sagawa
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585
| | - Hirokazu Kobayashi
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| | - Chinatsu Murata
- Graduate School of Environmental Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810
| | - Yukatsu Shichibu
- Faculty of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810
| | - Katsuaki Konishi
- Faculty of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810
| | - Mineo Hashizume
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585
| | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| |
Collapse
|
14
|
Wang C, Wu C, Zhang A, Chen K, Cao F, Ouyang P. Conversion of
N
‐Acetyl‐D‐glucosamine into 3‐Acetamido‐5‐acetylfuran Using Cheap Ammonium Chloride as Catalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202104574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chengyong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Chaoqiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
- Jiangsu Key Laboratory of Marine Bioresources and Environment Jiangsu Ocean University Lianyungang 222005 China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Fei Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
15
|
Wu C, Wang C, Zhang A, Chen K, Cao F, Ouyang P. Preparation of 3-aceta mido-5-acetylfuran from N-acetylglucosamine and chitin using biobased deep eutectic solvents as catalysts. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00118g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DES (choline chloride/citric acid) is reported for the first time to convert NAG to 3A5AF with a yield of 47.11 mol%.
Collapse
Affiliation(s)
- Chaoqiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengyong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fei Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
van der Loo CHM, Borst MLG, Pouwer K, Minnaard AJ. The dehydration of N-acetylglucosamine (GlcNAc) to enantiopure dihydroxyethyl acetamidofuran (Di-HAF). Org Biomol Chem 2021; 19:10105-10111. [PMID: 34755732 DOI: 10.1039/d1ob02004h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The first multi-gram synthesis of enantiopure dihydroxyethyl acetamidofuran (Di-HAF) is reported. Under optimized conditions, GlcNAc dehydrates in pyridine in the presence of phenylboronic acid and triflic acid to afford Di-HAF in 73% yield and 99.3% ee in just 30 minutes. This protocol opens the door for further research on this bio-renewable building block which is now available as a chiral pool synthon. A plausible mechanism of its formation and of the subsequent dehydration of Di-HAF into well-known 3-acetamido-5-acetylfuran (3A5AF) is proposed.
Collapse
Affiliation(s)
- Cornelis H M van der Loo
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Mark L G Borst
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Kees Pouwer
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Chemo-enzymatic protocol converts chitin into a nitrogen-containing furan derivative, 3-acetamido-5-acetylfuran. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.112001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Zang H, Li H, Jiao S, Lou J, Du Y, Huang N. Green Conversion of
N
‐Acetylglucosamine into Valuable Platform Compound 3‐Acetamido‐5‐acetylfuran Using Ethanolamine Ionic Liquids as Recyclable Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202100231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongjun Zang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes School of Chemistry, Tiangong University Binshuixi Road Tianjin 300387 China
| | - Huanxin Li
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes School of Chemistry, Tiangong University Binshuixi Road Tianjin 300387 China
| | - Shuolei Jiao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes School of Chemistry, Tiangong University Binshuixi Road Tianjin 300387 China
| | - Jing Lou
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes School of Chemistry, Tiangong University Binshuixi Road Tianjin 300387 China
| | - Yannan Du
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes School of Chemistry, Tiangong University Binshuixi Road Tianjin 300387 China
| | - Nalan Huang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes School of Chemistry, Tiangong University Binshuixi Road Tianjin 300387 China
| |
Collapse
|
19
|
Shi X, Ye X, Zhong H, Wang T, Jin F. Sustainable nitrogen-containing chemicals and materials from natural marine resources chitin and microalgae. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Banwell MG, Pollard B, Liu X, Connal LA. Exploiting Nature's Most Abundant Polymers: Developing New Pathways for the Conversion of Cellulose, Hemicellulose, Lignin and Chitin into Platform Molecules (and Beyond). Chem Asian J 2021; 16:604-620. [PMID: 33463003 DOI: 10.1002/asia.202001451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Indexed: 12/16/2022]
Abstract
The four most prominent forms of biomass are cellulose, hemicellulose, lignin and chitin. In efforts to develop sustainable sources of platform molecules there has been an increasing focus on examining how these biopolymers could be exploited as feedstocks that support the chemical supply chain, including in the production of fine chemicals. Many different approaches are possible and some of the ones being developed in the authors' laboratories are emphasised.
Collapse
Affiliation(s)
- Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou/Zhuhai, 510632/519070, P. R. China.,Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Brett Pollard
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Luke A Connal
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Dai J, Li F, Fu X. Towards Shell Biorefinery: Advances in Chemical-Catalytic Conversion of Chitin Biomass to Organonitrogen Chemicals. CHEMSUSCHEM 2020; 13:6498-6508. [PMID: 32897633 DOI: 10.1002/cssc.202001955] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Chitin is the most abundant biopolymer after cellulose but it has not been fully utilized yet. Because of biologically fixed nitrogen, effective conversion of chitin or its derivatives to value-added organonitrogen compounds is a promising strategy to valorize chitin biomass, which has attracted increasing attention. Recently, a novel concept of shell biorefinery has been proposed on account of the huge potentials of chitin valorization. Until now, a number of valuable organonitrogen chemicals, including amino sugars, amino alcohols, amino acids, and heterocyclic compounds, have been produced from chitin biomass. In this Minireview, the focus is on the recent advances in the synthesis of organonitrogen chemicals employing chitin biomass as starting material via different catalytic processes. An outlook on the challenges and opportunities for more effective valorization of chitin will be given.
Collapse
Affiliation(s)
- Jinhang Dai
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Fukun Li
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Xing Fu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|