1
|
Podder S, Jungi H, Mitra J. In Pursuit of Carbon Neutrality: Progresses and Innovations in Sorbents for Direct Air Capture of CO 2. Chemistry 2025; 31:e202500865. [PMID: 40192268 DOI: 10.1002/chem.202500865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Direct air capture (DAC) is of immense current interest, as a means to facilitate CO2 capture at low concentrations (∼400 ppm) directly from the atmosphere, with the aim of addressing global warming caused by excessive anthropogenic CO2 production. Traditionally, DAC of CO2 has relied on amine scrubbing and metal carbonate /hydroxide solutions. However, recent years have seen notable progress in DAC sorbents, with key advancements aimed at improving efficiency, capacity, and regenerability while reducing energy consumption. This review delivers an exhaustive analysis of contemporary developments in DAC sorbents, addressing the innovations in material design and consequent performance enhancement. The limitations of the sorbents have also been discussed, with future perspectives for improving sustainable CO2 capture strategies. We anticipate that this overview will help lay the groundwork for further development and large-scale implementation of sustainable sorbents and cutting-edge technologies toward attaining carbon neutrality.
Collapse
Affiliation(s)
- Sumana Podder
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hiren Jungi
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joyee Mitra
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Ye ZM, Xie Y, Kirlikovali KO, Xiang S, Farha OK, Chen B. Architecting Metal-Organic Frameworks at Molecular Level toward Direct Air Capture. J Am Chem Soc 2025; 147:5495-5514. [PMID: 39919319 DOI: 10.1021/jacs.4c12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Escalating carbon dioxide (CO2) emissions have intensified the greenhouse effect, posing a significant long-term threat to environmental sustainability. Direct air capture (DAC) has emerged as a promising approach to achieving a net-zero carbon future, which offers several practical advantages, such as independence from specific CO2 emission sources, economic feasibility, flexible deployment, and minimal risk of CO2 leakage. The design and optimization of DAC sorbents are crucial for accelerating industrial adoption. Metal-organic frameworks (MOFs), with high structural order and tunable pore sizes, present an ideal solution for achieving strong guest-host interactions under trace CO2 conditions. This perspective highlights recent advancements in using MOFs for DAC, examines the molecular-level effects of water vapor on trace CO2 capture, reviews data-driven computational screening methods to develop a molecularly programmable MOF platform for identifying optimal DAC sorbents, and discusses scale-up and cost of MOFs for DAC.
Collapse
Affiliation(s)
- Zi-Ming Ye
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Banglin Chen
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Einkauf JD, Williams NJ, Seipp CA, Custelcean R. Near Quantitative Removal of Selenate and Sulfate Anions from Wastewaters by Cocrystallization with Chelating Hydrogen-Bonding Guanidinium Ligands. JACS AU 2023; 3:879-888. [PMID: 37006778 PMCID: PMC10052226 DOI: 10.1021/jacsau.2c00673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Selenium (Se) has become an environmental contaminant of aquatic ecosystems as a result of human activities, particularly mining, fossil fuel combustion, and agricultural activities. By leveraging the high sulfate concentrations relative to Se oxyanions (i.e., SeO n 2-, n = 3, 4) present in some wastewaters, we have developed an efficient approach to Se-oxyanion removal by cocrystallization with bisiminoguanidinium (BIG) ligands that form crystalline sulfate/selenate solid solutions. The crystallization of the sulfate, selenate and selenite, oxyanions and of sulfate/selenate mixtures with five candidate BIG ligands are reported along with the thermodynamics of crystallization and aqueous solubilities. Oxyanion removal experiments with the top two performing candidate ligands show a near quantitative removal (>99%) of sulfate or selenate from solution. When both sulfate and selenate are present, there is near quantitative removal (>99%) of selenate, down to sub-ppb Se levels, with no discrimination between the two oxyanions during cocrystallization. Reducing the selenate concentrations by 3 orders of magnitude or more relative to sulfate, as found in many wastewaters, led to no measurable loss in Se removal efficiencies. This work offers a simple and effective alternative to selective separation of trace amounts of highly toxic selenate oxyanions from wastewaters, to meet stringent regulatory discharge limits.
Collapse
|
4
|
Kikkawa S, Amamoto K, Fujiki Y, Hirayama J, Kato G, Miura H, Shishido T, Yamazoe S. Direct Air Capture of CO 2 Using a Liquid Amine-Solid Carbamic Acid Phase-Separation System Using Diamines Bearing an Aminocyclohexyl Group. ACS ENVIRONMENTAL AU 2022; 2:354-362. [PMID: 37101968 PMCID: PMC10125313 DOI: 10.1021/acsenvironau.1c00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The phase separation between a liquid amine and the solid carbamic acid exhibited >99% CO2 removal efficiency under a 400 ppm CO2 flow system using diamines bearing an aminocyclohexyl group. Among them, isophorone diamine [IPDA; 3-(aminomethyl)-3,5,5-trimethylcyclohexylamine] exhibited the highest CO2 removal efficiency. IPDA reacted with CO2 in a CO2/IPDA molar ratio of ≥1 even in H2O as a solvent. The captured CO2 was completely desorbed at 333 K because the dissolved carbamate ion releases CO2 at low temperatures. The reusability of IPDA under CO2 adsorption-and-desorption cycles without degradation, the >99% efficiency kept for 100 h under direct air capture conditions, and the high CO2 capture rate (201 mmol/h for 1 mol of amine) suggest that the phase separation system using IPDA is robust and durable for practical use.
Collapse
Affiliation(s)
- Soichi Kikkawa
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
| | - Kazushi Amamoto
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Yu Fujiki
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Jun Hirayama
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
| | - Gen Kato
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Hiroki Miura
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
- Research
Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Tetsuya Shishido
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
- Research
Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
| | - Seiji Yamazoe
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Elements
Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615−8245, Japan
- Research
Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192−0397, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
5
|
Jin S, Wu M, Jing Y, Gordon RG, Aziz MJ. Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing. Nat Commun 2022; 13:2140. [PMID: 35440649 PMCID: PMC9018824 DOI: 10.1038/s41467-022-29791-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
We demonstrate a carbon capture system based on pH swing cycles driven through proton-coupled electron transfer of sodium (3,3'-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate)) (DSPZ) molecules. Electrochemical reduction of DSPZ causes an increase of hydroxide concentration, which absorbs CO2; subsequent electrochemical oxidation of the reduced DSPZ consumes the hydroxide, causing CO2 outgassing. The measured electrical work of separating CO2 from a binary mixture with N2, at CO2 inlet partial pressures ranging from 0.1 to 0.5 bar, and releasing to a pure CO2 exit stream at 1.0 bar, was measured for electrical current densities of 20-150 mA cm-2. The work for separating CO2 from a 0.1 bar inlet and concentrating into a 1 bar exit is 61.3 kJ molCO2-1 at a current density of 20 mA cm-2. Depending on the initial composition of the electrolyte, the molar cycle work for capture from 0.4 mbar extrapolates to 121-237 kJ molCO2-1 at 20 mA cm-2. We also introduce an electrochemical rebalancing method that extends cell lifetime by recovering the initial electrolyte composition after it is perturbed by side reactions. We discuss the implications of these results for future low-energy electrochemical carbon capture devices.
Collapse
Affiliation(s)
- Shijian Jin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Min Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yan Jing
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Roy G Gordon
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Michael J Aziz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Leszczyński M, Kornacki D, Terlecki M, Justyniak I, Miletić GI, Halasz I, Bernatowicz P, Szejko V, Lewiński J. Mechanochemical vs Wet Approach for Directing CO 2 Capture toward Various Carbonate and Bicarbonate Networks. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:4374-4380. [PMID: 35433136 PMCID: PMC9006257 DOI: 10.1021/acssuschemeng.1c08402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The distinct research areas related to CO2 capture and mechanochemistry are both highly attractive in the context of green chemistry. However, merger of these two areas, i.e., mechanochemical CO2 capture, is still in an early stage of development. Here, the application of biguanidine as an active species for CO2 capture is investigated using both solution-based and liquid-assisted mechanochemical approaches, which lead to a variety of biguanidinium carbonate and bicarbonate hydrogen-bonded networks. We demonstrate that in solution, the formation of the carbonate vs bicarbonate networks can be directed by the organic solvent, while, remarkably, in the liquid-assisted mechanochemical synthesis employing the same solvents as additives, the selectivity in network formation is inversed. In general, our findings support the view of mechanochemistry not only as a sustainable alternative but rather as a complementary strategy to solution-based synthesis.
Collapse
Affiliation(s)
- Michał
K. Leszczyński
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dawid Kornacki
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Terlecki
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Justyniak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Ivan Halasz
- Ruđ̵er
Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Piotr Bernatowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vadim Szejko
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Janusz Lewiński
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
7
|
Custelcean R. Direct air capture of CO 2 via crystal engineering. Chem Sci 2021; 12:12518-12528. [PMID: 34703538 PMCID: PMC8494026 DOI: 10.1039/d1sc04097a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2021] [Indexed: 12/21/2022] Open
Abstract
This article presents a perspective view of the topic of direct air capture (DAC) of carbon dioxide and its role in mitigating climate change, focusing on a promising approach to DAC involving crystal engineering of metal-organic and hydrogen-bonded frameworks. The structures of these crystalline materials can be easily elucidated using X-ray and neutron diffraction methods, thereby allowing for systematic structure-property relationships studies, and precise tuning of their DAC performance.
Collapse
Affiliation(s)
- Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
8
|
Zhang Q, Jiang Y, Li Y, Song X, Luo X, Ke Z, Zou Y. Design, synthesis, and physicochemical study of a biomass-derived CO 2 sorbent 2,5-furan-bis(iminoguanidine). iScience 2021; 24:102263. [PMID: 33796847 PMCID: PMC7995611 DOI: 10.1016/j.isci.2021.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, the concept of biomass-based direct air capture is proposed, and the aminoguanidine CO2 chemical sorbent 2,5-furan-bis(iminoguanidine) (FuBIG) was designed, synthesized, and elucidated for the physicochemical properties in the process of CO2 capture and release. Results showed that the aqueous solution of FuBIG could readily capture CO2 from ambient air and provided an insoluble tetrahydrated carbonate salt FuBIGH2(CO3) (H2O)4 with a second order kinetics. Hydrogen binding modes of iminoguanidine cations with carbonate ions and water were identified by single-crystal X-ray diffraction analysis. Equilibrium constant (K) and the enthalpies (ΔH) for CO2 absorption/release were obtained by thermodynamic and kinetic analysis (K7 = 5.97 × 104, ΔH7 = -116.1 kJ/mol, ΔH8 = 209.31 kJ/mol), and the CO2-release process was conformed to the geometrical phase-boundary model (1-(1-α)1/3 = kt). It was found that the FuBIGH2(CO3) (H2O)4 can release CO2 spontaneously in DMSO without heating. Zebrafish models revealed a favorable biocompatibility of FuBIG.
Collapse
Affiliation(s)
- Qianzhong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Yi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Yinwu Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Xianheng Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Xiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Zhuofeng Ke
- School of Chemistry, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510000, P. R. China
| |
Collapse
|
9
|
Liu M, Custelcean R, Seifert S, Kuzmenko I, Gadikota G. Hybrid Absorption–Crystallization Strategies for the Direct Air Capture of CO 2 Using Phase-Changing Guanidium Bases: Insights from in Operando X-ray Scattering and Infrared Spectroscopy Measurements. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meishen Liu
- School of Civil and Environmental Engineering, Cornell University, 527 College Avenue, 117 Hollister Hall, Ithaca, New York 14853, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Soenke Seifert
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ivan Kuzmenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, 527 College Avenue, 117 Hollister Hall, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Custelcean R. Iminoguanidines: from anion recognition and separation to carbon capture. Chem Commun (Camb) 2020; 56:10272-10280. [PMID: 32716430 DOI: 10.1039/d0cc04332j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iminoguanidines, first reported in 1898, have received renewed attention in the last 5 years due to their ability to recognize and separate anions from competitive aqueous environments. Iminoguanidines display high recognition abilities towards hydrophilic oxyanions (e.g., sulfate, chromate, carbonate) through strong and complementary hydrogen bonding from the guanidinium groups. This feature article reviews the fundamental anion recognition chemistry of iminoguanidines, as well as real-world applications including sulfate removal from seawater and CO2 capture for climate change mitigations.
Collapse
Affiliation(s)
- Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| |
Collapse
|