1
|
Bi R, Liu J, Cai Y, Zhang S, Lu M, Du C, Liu M, Ding X, Xiao K, Li S, Jiang T, Xiang S. Dual-atom nanozymes: Synthesis, characterization, catalytic mechanism and biomedical applications. Colloids Surf B Biointerfaces 2025; 253:114774. [PMID: 40373349 DOI: 10.1016/j.colsurfb.2025.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
Dual-atom nanozymes (DAzymes), a novel class of nanozymes featuring dual-metal atomic active centers, mimic the multi-metal synergistic mechanisms of natural enzymes to achieve superior catalytic activity compared to conventional single-atom nanozymes. Their unique dual-atom architecture not only effectively mitigates metal atom aggregation but also significantly enhances substrate adsorption capacity and catalytic efficiency through interatomic electronic coupling and spatial synergy. This structural innovation addresses critical limitations of single-atom nanozymes, including low metal loading and homogeneous active sites. This review systematically summarizes recent advancements in DAzymes: First, we elucidate their design principles and structural advantages, with a focus on precise synthesis strategies (e.g., spatial confinement, coordination stabilization) and atomic-level characterization techniques (e.g., synchrotron radiation-based X-ray absorption spectroscopy, spherical aberration-corrected electron microscopy). By unraveling structure-activity relationships, we clarify the multi-dimensional regulatory mechanisms of dual-atom systems-including coordination environments, electronic coupling, and spatial configurations-on redox enzyme-like activities such as peroxidase and superoxide dismutase mimics. Furthermore, we elaborate on their groundbreaking biomedical applications, including antibacterial and antitumor therapies via reactive oxygen species (ROS) regulation, antioxidant damage repair, and biosensing. This review aims to provide theoretical guidance for the rational design of high-performance DAzymes and to advance their translational applications in precision medicine and intelligent biomaterials.
Collapse
Affiliation(s)
- Ran Bi
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jingyi Liu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yuyao Cai
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Shuangning Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Maonan Lu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Chenxi Du
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Mengyuan Liu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xinyu Ding
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Ke Xiao
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Si Li
- Division of Pulmonary and Critical CareMedicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Scottsdale, AZ, USA
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Shidong Xiang
- Tianjin Tianyao Pharmaceuticals Co., Ltd., Tianjin, China.
| |
Collapse
|
2
|
Chu T, Tian P, Wang G, Jia Y, Dai S, Rong C, Zhang B, Xuan FZ. An Atomically Dispersed Pd Sub-Metallene: Intermediate State of Single Atoms and Metal Bonds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504603. [PMID: 40326153 DOI: 10.1002/adma.202504603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Despite the metal coordination and single-atom catalyst (SAC) have been extensively investigated in surface science over the past decade, their overall activity in involving multi-step reactions remains unsatisfactory owing to the metal bond and single atom being irreconcilable. Here, a stable atomically dispersed Pd sub-metallene (Pd ADSM) layer supported on the 2D MXene (Mo2TiC2) is reported, which combines the advantages of 2D structures, single atoms, and metal bonds. Pd ADSM shows covalent structures along the z-coordination and highly coordinated metal bonds in the 2D direction. During the alkaline hydrogen evolution reaction (HER), Pd ADSM shows 7- and 112-times higher mass activity than the SAC (Pd SAC) and commercial Pt/C at the overpotential of -108 mV, respectively. Operando characterizations and theoretical calculations reveal that the Pd─Pd interface not only makes the adsorbed water form a flexible hydrogen-bonded skeleton closer to the catalytic center but also reduces the energy barrier for the HER rate-determining step. Moreover, the moderate adsorption energy of Pd─Pd bonds in ADSM can rapidly activate, dissociate, and desorb hydrogen molecules at room temperature, resulting in record-high hydrogen sensing performances (Response time, Recovery time, and Sensitivity for 100 ppm H2 are 4.8, 1.6 s, and 43.5%, respectively).
Collapse
Affiliation(s)
- Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengfei Tian
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Guiying Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Wang L, Liu Y. Electrocatalytic Innovations at Atomic Scale: From Single-Atom to Periodic Ensembles for Sustainable Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:634. [PMID: 40278499 PMCID: PMC12029464 DOI: 10.3390/nano15080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Atomically dispersed catalysts, including single-atom, dual-atom, and periodic single-metal site catalysts, have revolutionized electrocatalysis by merging atomic precision with heterogeneous stability. This review traces their evolution from pioneering stabilization strategies to advanced microenvironment engineering, enabling breakthroughs in oxygen reduction, hydrogen evolution, and CO2 reduction. SACs maximize atom utilization but face multi-step reaction limits, addressed by DACs through synergistic dual-site mechanisms. PSMSCs further enhance activity via ordered atomic arrangements, ensuring uniform active sites and mechanistic clarity. Key breakthroughs include microenvironment engineering to tailor active sites, as well as advanced characterization techniques revealing dynamic restructuring under operando conditions. The transition from isolated atoms to ordered ensembles highlights the importance of atomic-level control in unlocking new catalytic mechanisms. This work underscores the transformative potential of ADCs in sustainable energy technologies and provides a roadmap for future research in rational catalyst design, dynamic behavior analysis, and scalable synthesis.
Collapse
Affiliation(s)
- Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | | |
Collapse
|
4
|
Mostoni S, Mirizzi L, Frigerio A, Zuccante G, Ferrara C, Muhyuddin M, D'Arienzo M, Fernanda Orsini S, Scotti R, Cosenza A, Atanassov P, Santoro C. In-Situ HF Forming Agents for Sustainable Manufacturing of Iron-Based Oxygen Reduction Reaction Electrocatalysis Synthesized Through Sacrificial Support Method. CHEMSUSCHEM 2025; 18:e202401185. [PMID: 39325923 PMCID: PMC11789974 DOI: 10.1002/cssc.202401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Fe-Nx-Cs being suitable to replace scarce and overpriced platinum group metals (PGMs) for cathodic oxygen reduction reaction (ORR) are gaining significant importance in the fuel cell arena. Although the typical sacrificial support method (SSM) ensures the superior electrocatalytic activity of derived Fe-Nx-C, removing silica hard templates always remains a great challenge due to the hazardous use of highly toxic and not environmentally friendly hydrofluoric acid. Herein, strategic insight was given to modified SSM by exploiting the in-situ formation of HF, deriving from the decomposition of NH4HF2 and NaF, to dissolve silica templates, thus avoiding the direct use of HF. First, the suitable molar ratio between the etching agent and the silica was analyzed, revealing that NH4HF2 efficiently dissolved silica even in a stoichiometric amount, whereas an excess of NaF was required. However, both etching agents exhibited conformal removal of silica while dispersed active moieties within the highly porous architecture of derived electrocatalysts were left behind. Moreover, NH4HF2-washed counterparts demonstrated relatively higher performance both in acidic and alkaline media. Notably, with NH4HF2-washed Fe-Nx-C electrocatalyst, a remarkable onset potential of 970 mV (vs RHE) was achieved with nearly tetra-electronic ORR as the peroxide yield remained less than 10 % in the alkaline medium.
Collapse
Affiliation(s)
- Silvia Mostoni
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Lorenzo Mirizzi
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Alessandra Frigerio
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Giovanni Zuccante
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
- Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| | - Chiara Ferrara
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Mohsin Muhyuddin
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Massimiliano D'Arienzo
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Sara Fernanda Orsini
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Roberto Scotti
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Alessio Cosenza
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaIrvineCA92697United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaIrvineCA92697United States
| | - Carlo Santoro
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| |
Collapse
|
5
|
Zhang T, Wang D, Liu J. Periodic Single-Metal Site Catalysts: Creating Homogeneous and Ordered Atomic-Precision Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408259. [PMID: 39149786 DOI: 10.1002/adma.202408259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Heterogeneous single-metal-site catalysts (SMSCs), often referred to as single-atom catalysts (SACs), demonstrate promising catalytic activity, selectivity, and stability across a wide spectrum of reactions due to their rationally designed microenvironments encompassing coordination geometry, binding ligands, and electronic configurations. However, the inherent disorderliness of SMSCs at both atomic scale and nanoscale poses challenges in deciphering working principles and establishing the correlations between microenvironments and the catalytic performances of SMSCs. The rearrangement of randomly dispersed single metals into homogeneous and atomic-precisely structured periodic single-metal site catalysts (PSMSCs) not only simplifies the chaos in SMSCs systems but also unveils new opportunities for manipulating catalytic performance and gaining profound insights into reaction mechanisms. Moreover, the synergistic effects of adjacent single metals and the integration effects of periodic single-metal arrangement further broaden the industrial application scope of SMSCs. This perspective offers a comprehensive overview of recent advancements and outlines prospective avenues for research in the design and characterizations of PSMSCs, while also acknowledging the formidable challenges encountered and the promising prospects that lie ahead.
Collapse
Affiliation(s)
- Tianyu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Mekkering MJ, Laan PCM, Troglia A, Bliem R, Kizilkaya AC, Rothenberg G, Yan N. Bottom-Up Synthesis of Platinum Dual-Atom Catalysts on Cerium Oxide. ACS Catal 2024; 14:9850-9859. [PMID: 38988652 PMCID: PMC11232020 DOI: 10.1021/acscatal.4c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
We present here the synthesis and performance of dual-atom catalysts (DACs), analogous to well-known single-atom catalysts (SACs). DACs feature sites containing pairs of metal atoms and can outperform SACs due to their additional binding possibilities. Yet quantifying the improved catalytic activity in terms of proximity effects remains difficult, as it requires both high-resolution kinetic data and an understanding of the reaction pathways. Here, we use an automated bubble counter setup for comparing the catalytic performance of ceria-supported platinum SACs and DACs in ammonia borane hydrolysis. The catalysts were synthesized by wet impregnation and characterized using SEM, HAADF-STEM, XRD, XPS, and CO-DRIFTS. High-precision kinetic studies of ammonia borane hydrolysis in the presence of SACs show two temperature-dependent regions, with a transition point at 43 °C. Conversely, the DACs show only one regime. We show that this is because DACs preorganize both ammonia borane and water at the dual-atom active site. The additional proximal Pt atom improves the reaction rate 3-fold and enables faster reactions at lower temperatures. We suggest that the DACs enable the activation of the water-O-H bond as well as increase the hydrogen spillover effect due to the adjacent Pt site. Interestingly, using ammonia borane hydrolysis as a benchmark reaction gives further insight into hydrogen spillover mechanisms, above what is known from the CO oxidation studies.
Collapse
Affiliation(s)
- Martijn J Mekkering
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Petrus C M Laan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alessandro Troglia
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Roland Bliem
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Ali C Kizilkaya
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Chemical Engineering, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
8
|
Chen W, Jin X, Zhang L, Wang L, Shi J. Modulating the Structure and Composition of Single-Atom Electrocatalysts for CO 2 reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304424. [PMID: 38044311 PMCID: PMC10916602 DOI: 10.1002/advs.202304424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction reaction (eCO2 RR) is a promising strategy to achieve carbon cycling by converting CO2 into value-added products under mild reaction conditions. Recently, single-atom catalysts (SACs) have shown enormous potential in eCO2 RR due to their high utilization of metal atoms and flexible coordination structures. In this work, the recent progress in SACs for eCO2 RR is outlined, with detailed discussions on the interaction between active sites and CO2 , especially the adsorption/activation behavior of CO2 and the effects of the electronic structure of SACs on eCO2 RR. Three perspectives form the starting point: 1) Important factors of SACs for eCO2 RR; 2) Typical SACs for eCO2 RR; 3) eCO2 RR toward valuable products. First, how different modification strategies can change the electronic structure of SACs to improve catalytic performance is discussed; Second, SACs with diverse supports and how supports assist active sites to undergo catalytic reaction are introduced; Finally, according to various valuable products from eCO2 RR, the reaction mechanism and measures which can be taken to improve the selectivity of eCO2 RR are discussed. Hopefully, this work can provide a comprehensive understanding of SACs for eCO2 RR and spark innovative design and modification ideas to develop highly efficient SACs for CO2 conversion to various valuable fuels/chemicals.
Collapse
Affiliation(s)
- Weiren Chen
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Xixiong Jin
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Lingxia Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024P. R. China
| | - Lianzhou Wang
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
9
|
Jiang X, Chen C, Chen J, Yu S, Yu W, Shen L, Li B, Zhou M, Lin H. Atomically dispersed dual-atom catalysts: A new rising star in environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169142. [PMID: 38070550 DOI: 10.1016/j.scitotenv.2023.169142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Single-atom catalysts, characterized by individual metal atoms as active centers, have emerged as promising candidates owing to their remarkable catalytic efficiency, maximum atomic utilization efficiency, and robust stability. However, the limitation of single-atom catalysts lies in their inability to cater to multistep reactions using a solitary active site. Introducing an additional metal atom can amplify the number of active sites, modulate the electronic structure, bolster adsorption ability, and enable a gamut of core reactions, thus augmenting their catalytic prowess. As such, dual-atom catalysts have risen to prominence. However, a comprehensive review elucidating the realm of dual-atom catalysts in environmental remediation is currently lacking. This review endeavors to bridge this gap, starting with a discourse on immobilization techniques for dual-atom catalysts, which includes configurations such as adjacent atoms, bridged atoms, and co-facially separated atoms. The review then delves into the intrinsic activity mechanisms of these catalysts, elucidating aspects like adsorption dynamics, electronic regulation, and synergistic effects. Following this, a comprehensive summarization of dual-atom catalysts for environmental applications is provided, spanning electrocatalysis, photocatalysis, and Fenton-like reactions. Finally, the existing challenges and opportunities in the field of dual-atom catalysts are extensively discussed. This work aims to be a beacon, illuminating the path towards the evolution and adoption of dual-atom catalysts in environmental remediation.
Collapse
Affiliation(s)
- Xialiang Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shuning Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
10
|
Fan HS, Liang X, Ma FX, Zhang G, Liu ZQ, Zhen L, Zeng XC, Xu CY. Low-Potential Iodide Oxidation Enables Dual-Atom CoFe─N─C Catalysts for Ultra-Stable and High-Energy-Efficiency Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307863. [PMID: 37822157 DOI: 10.1002/smll.202307863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Indexed: 10/13/2023]
Abstract
The low energy efficiency and limited cycling life of rechargeable Zn-air batteries (ZABs) arising from the sluggish oxygen reduction/evolution reactions (ORR/OERs) severely hinder their commercial deployment. Herein, a zeolitic imidazolate framework (ZIF)-derived strategy associated with subsequent thermal fixing treatment is proposed to fabricate dual-atom CoFe─N─C nanorods (Co1 Fe1 ─N─C NRs) containing atomically dispersed bimetallic Co/Fe sites, which can promote the energy efficiency and cyclability of ZABs simultaneously by introducing the low-potential oxidation redox reactions. Compared to the mono-metallic nanorods, Co1 Fe1 ─N─C NRs exhibit remarkable ORR performance including a positive half-wave potential of 0.933 V versus reversible hydrogen electrode (RHE) in alkaline electrolyte. Surprisingly, after introducing the potassium iodide (KI) additive, the oxidation overpotential of Co1 Fe1 ─N─C NRs to reach 10 mA cm-2 can be significantly reduced by 395 mV compared to the conventional destructive OER. Theoretical calculations show that the markedly decreased overpotential of iodide oxidation can be ascribed to the synergistic effects of neighboring Co─Fe diatomic sites as the unique adsorption sites. Overall, aqueous ZABs assembled with Co1 Fe1 ─N─C NRs and KI as the air-cathode catalyst and electrolyte additive, respectively, can deliver a low charging voltage of 1.76 V and ultralong cycling stability of over 230 h with a high energy efficiency of ≈68%.
Collapse
Affiliation(s)
- Hong-Shuang Fan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiongyi Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fei-Xiang Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Guobin Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zheng-Qi Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
11
|
Xu W, Zeng R, Rebarchik M, Posada-Borbón A, Li H, Pollock CJ, Mavrikakis M, Abruña HD. Atomically Dispersed Zn/Co-N-C as ORR Electrocatalysts for Alkaline Fuel Cells. J Am Chem Soc 2024; 146:2593-2603. [PMID: 38235653 DOI: 10.1021/jacs.3c11355] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal-organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co-N-C), consisting of Co-N4 and Zn-N4 local structures. These catalysts exhibited superior ORR activity with a half-wave potential (E1/2) of 0.938 V versus RHE (reversible hydrogen electrode) and robust stability (ΔE1/2 = -8.5 mV) after 50k electrochemical cycles. Moreover, this remarkable performance was validated under realistic fuel cell working conditions, achieving a record-high peak power density of ∼1 W cm-2 among the reported SACs for alkaline fuel cells. Operando X-ray absorption spectroscopy was conducted to identify the active sites and reveal catalytic mechanistic insights. The results indicated that the Co atom in the Co-N4 structure was the main catalytically active center, where one axial oxygenated species binds to form an Oads-Co-N4 moiety during the ORR. In addition, theoretical studies, based on a potential-dependent microkinetic model and core-level shift calculations, showed good agreement with the experimental results and provided insights into the bonding of oxygen species on Co-N4 centers during the ORR. This work provides a comprehensive mechanistic understanding of the active sites in the Zn/Co-N-C catalysts and will pave the way for the future design and advancement of high-performance single-site electrocatalysts for fuel cells and other energy applications.
Collapse
Affiliation(s)
- Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael Rebarchik
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alvaro Posada-Borbón
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Liang Y, Liu Y, Zhao P, Chen Y, Lei J, Hou J, Hou C, Huo D. An electrochemical sensor based on FeCo bimetallic single-atom nanozyme for sensitive detection of H 2O 2. Anal Chim Acta 2023; 1281:341867. [PMID: 38783733 DOI: 10.1016/j.aca.2023.341867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 05/25/2024]
Abstract
Efficient catalytic decomposition of H2O2 is accompanied by electron transfer through Fe-Nx active sites of hemin in the human body. Inspired by this reaction process, the Fe SAs/Co CNs were successfully synthesized by combined Co atomic sites with nitrogen-carbon doped Fe single-atom active sites (SAs). The synergy between transition metals not only reduces agglomeration during synthesis but also improves its own electrical conductivity due to the interaction between Fe and Co that promotes the formation of graphite surface. Crucially, the synergistic effect of the Co site significantly enhanced the peroxidase activity of the Fe SAs and the reaction rate of the Fenton-like reaction, resulting in an efficient detection of H2O2. Catalytic kinetic calculations and enzymatic kinetic calculations were used to verify the electron transfer rate and catalytic performance of their constructed electrochemical sensing interfaces. The results showed that Fe SAs/Co CNs@GCE showed better detection performance than Fe SAs CNs@GCE. It was applied successfully to detect H2O2 released from cells in real-time as well. The linear detection range of Fe SAs/Co CNs@GCE for H2O2 was 1-16664 μM, and the detection limit was as low as 0.25 μM. Furthermore, an electrochemical sensing chip was constructed using Fe SAs/Co CNs@SPE and the prepared microfluidic channel. The constructed portable FeSAs/Co CNs@SPE had a linear range of 1-400 μM and a detection limit of 0.36 μM and achieved the recovery detection of H2O2 in serum. The electrochemical sensing interfaces constructed based on Fe SAs/Co CNs all have efficient catalytic performance and excellent real-time hydrogen peroxide detection performance, which have practical application potential for human oxidative stress level detection. And it provides a novel approach to the trace detection of bioactive small molecules.
Collapse
Affiliation(s)
- Yi Liang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Jincan Lei
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| |
Collapse
|
13
|
Zhou S, Chen C, Xia J, Li L, Qian X, Arif M, Yin F, Dai G, He G, Chen Q, Chen H. 3D Hollow Hierarchical Porous Carbon with Fe-N 4 -OH Single-Atom Sites for High-Performance Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302464. [PMID: 37594730 DOI: 10.1002/smll.202302464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Indexed: 08/19/2023]
Abstract
The development of innovative and efficient Fe-N-C catalysts is crucial for the widespread application of zinc-air batteries (ZABs), where the inherent oxygen reduction reaction (ORR) activity of Fe single-atom sites needs to be optimized to meet the practical application. Herein, a three-dimensional (3D) hollow hierarchical porous electrocatalyst (ZIF8@FePMPDA-920) rich in asymmetric Fe-N4 -OH moieties as the single atomic sites is reported. The Fe center is in a penta-coordinated geometry with four N atoms and one O atom to form Fe-N4 -OH configuration. Compared to conventional Fe-N4 configuration, this unique structure can weaken the adsorption of intermediates by reducing the electron density of the Fe center for oxygen binding, which decreases the energy barrier of the rate-determining steps (RDS) to accelerate the ORR and oxygen evolution reaction (OER) processes for ZABs. The rechargeable liquid ZABs (LZABs) equipped with ZIF8@FePMPDA-920 display a high power density of 123.11 mW cm-2 and a long cycle life (300 h). The relevant flexible all-solid-state ZABs (FASSZABs) also display outstanding foldability and cyclical stability. This work provides a new perspective for the structural design of single-atom catalysts in the energy conversion and storage areas.
Collapse
Affiliation(s)
- Shilong Zhou
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Chao Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Muhammad Arif
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Fengxiang Yin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Guohong Dai
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Qun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
14
|
Shang Z, Feng X, Chen G, Qin R, Han Y. Recent Advances on Single-Atom Catalysts for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304975. [PMID: 37528498 DOI: 10.1002/smll.202304975] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Indexed: 08/03/2023]
Abstract
The present energy crisis and environmental challenges may be efficiently resolved by converting carbon dioxide (CO2 ) into various useful carbon products. The development of more effective catalysts has been the main focus of current research on photocatalytic CO2 reduction. Due to their high atomic efficiency and superior catalytic activity, single-atom catalysts (SACs) have attracted considerable interest in catalytic CO2 conversion. This review discusses the current research developments, obstacles, and potential of SACs for photocatalytic CO2 reduction. And further, discusses the principle of photocatalytic carbon dioxide reduction. This work has compared and analyzed the effects of support materials and active site types in SACs on photocatalytic CO2 reduction performance. This work believes that by sharing these developments, some inspiration for the rational design and development of stable and effective photocatalytic CO2 reduction catalysts based on SACs can be provided.
Collapse
Affiliation(s)
- Ziang Shang
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xueting Feng
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| |
Collapse
|
15
|
Dey G, Jana R, Saifi S, Kumar R, Bhattacharyya D, Datta A, Sinha ASK, Aijaz A. Dual Single-Atomic Co-Mn Sites in Metal-Organic-Framework-Derived N-Doped Nanoporous Carbon for Electrochemical Oxygen Reduction. ACS NANO 2023; 17:19155-19167. [PMID: 37774140 DOI: 10.1021/acsnano.3c05379] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Synthesizing dual single-atom catalysts (DSACs) with atomically isolated metal pairs is a challenging task but can be an effective way to enhance the performance for electrochemical oxygen reduction reaction (ORR). Herein, well-defined DSACs of Co-Mn, stabilized in N-doped porous carbon polyhedra (named CoMn/NC), are synthesized using high-temperature pyrolysis of a Co/Mn-doped zeolitic imidazolate framework. The atomically isolated Co-Mn site in CoMn/NC is recognized by combining microscopic as well as spectroscopic techniques. CoMn/NC exhibited excellent ORR activities in alkaline (E1/2 = 0.89 V) as well as in acidic (E1/2 = 0.82 V) electrolytes with long-term durability and enhanced methanol tolerance. Density functional theory (DFT) suggests that the Co-Mn site is efficiently activating the O-O bond via bridging adsorption, decisive for the 4e- oxygen reduction process. Though the Co-Mn sites favor O2 activation via the dissociative ORR mechanism, stronger adsorption of the intermediates in the dissociative path degrades the overall ORR activity. Our DFT studies conclude that the ORR on an Co-Mn site mainly occurs via bridging side-on O2 adsorption following thermodynamically and kinetically favorable associative mechanistic pathways with a lower overpotential and activation barrier. CoMn/NC performed excellently as a cathode in a proton exchange membrane (PEM) fuel cell and rechargeable Zn-air battery with high peak power densities of 970 and 176 mW cm-2, respectively. This work provides the guidelines for the rational design and synthesis of nonprecious DSACs for enhancing the ORR activity as well as the robustness of DSACs and suggests a design of multifunctional robust electrocatalysts for energy storage and conversion devices.
Collapse
Affiliation(s)
- Gargi Dey
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Rajkumar Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India
| | - Shadab Saifi
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Ravi Kumar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - D Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India
| | - A S K Sinha
- Department of Chemical & Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Arshad Aijaz
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| |
Collapse
|
16
|
Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. Constructing functional metal-organic frameworks by ligand design for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130848. [PMID: 36696779 DOI: 10.1016/j.jhazmat.2023.130848] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) with unique physical and chemical properties are composed of metal ions/clusters and organic ligands, including high porosity, large specific surface area, tunable structure and functionality, which have been widely used in chemical sensing, environmental remediation, and other fields. Organic ligands have a significant impact on the performance of MOFs. Selecting appropriate types, quantities and properties of ligands can well improve the overall performance of MOFs, which is one of the critical issues in the synthesis of MOFs. This article provides a comprehensive review of ligand design strategies for functional MOFs from the number of different types of organic ligands. Single-, dual- and multi-ligand design strategies are systematically presented. The latest advances of these functional MOFs in environmental applications, including pollutant sensing, pollutant separation, and pollutant degradation are further expounded. Furthermore, an outlook section of providing some insights on the future research problems and prospects of functional MOFs is highlighted with the purpose of conquering current restrictions by exploring more innovative approaches.
Collapse
Affiliation(s)
- Qian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenjing Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenfang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoyang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
17
|
Han J, Guan J. Heteronuclear dual-metal atom catalysts for nanocatalytic tumor therapy. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
18
|
Denisov N, Qin S, Will J, Vasiljevic BN, Skorodumova NV, Pašti IA, Sarma BB, Osuagwu B, Yokosawa T, Voss J, Wirth J, Spiecker E, Schmuki P. Light-Induced Agglomeration of Single-Atom Platinum in Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206569. [PMID: 36373557 DOI: 10.1002/adma.202206569] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
With recent advances in the field of single-atoms (SAs) used in photocatalysis, an unprecedented performance of atomically dispersed co-catalysts has been achieved. However, the stability and agglomeration of SA co-catalysts on the semiconductor surface may represent a critical issue in potential applications. Here, the photoinduced destabilization of Pt SAs on the benchmark photocatalyst, TiO2 , is described. In aqueous solutions within illumination timescales ranging from few minutes to several hours, light-induced agglomeration of Pt SAs to ensembles (dimers, multimers) and finally nanoparticles takes place. The kinetics critically depends on the presence of sacrificial hole scavengers and the used light intensity. Density-functional theory calculations attribute the light induced destabilization of the SA Pt species to binding of surface-coordinated Pt with solution-hydrogen (adsorbed H atoms), which consequently weakens the Pt SA bonding to the TiO2 surface. Despite the gradual aggregation of Pt SAs into surface clusters and their overall reduction to metallic state, which involves >90% of Pt SAs, the overall photocatalytic H2 evolution remains virtually unaffected.
Collapse
Affiliation(s)
- Nikita Denisov
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Shanshan Qin
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Johannes Will
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Bojana Nedić Vasiljevic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Natalia V Skorodumova
- Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH-Royal Institute of Technology, Brinellvägen 23, Stockholm, 10044, Sweden
| | - Igor A Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
- Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH-Royal Institute of Technology, Brinellvägen 23, Stockholm, 10044, Sweden
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Benedict Osuagwu
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Johannes Voss
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Janis Wirth
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, 78371, Czech Republic
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
19
|
Qu W, Chen C, Tang Z, Wen H, Hu L, Xia D, Tian S, Zhao H, He C, Shu D. Progress in metal-organic-framework-based single-atom catalysts for environmental remediation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Yusibova G, Assafrei JM, Ping K, Aruväli J, Paiste P, Käärik M, Leis J, Piirsoo HM, Tamm A, Kikas A, Kisand V, Starkov P, Kongi N. Bimetallic Metal-Organic-Framework-Derived Porous Cobalt Manganese Oxide Bifunctional Oxygen Electrocatalyst. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Zhao W, Xu F, Wang Z, Pan Z, Ye Y, Hu S, Weng B, Zhu R. Modulation of IrO 6 Chemical Environment for Highly Efficient Oxygen Evolution in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205495. [PMID: 36310342 DOI: 10.1002/smll.202205495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The sluggish kinetics of the oxygen evolution reaction (OER) limits the commercialization of oxygen electrochemistry, which plays a key role in renewable energy technologies such as fuel cells and electrolyzers. Herein, a facile and practical strategy is developed to successfully incorporate Ir single atoms into the lattice of transition metal oxides (TMOs). The chemical environment of Ir and its neighboring lattice oxygen is modulated, and the lattice oxygen provides lone-pair electrons and charge balance to stabilize Ir single atoms, resulting in the enhancement of both OER activity and durability. In particular, Ir0.08 Co2.92 O4 NWs exhibit an excellent mass activity of 1343.1 A g-1 and turnover frequency (TOF) of 0.04 s-1 at overpotentials of 300 mV. And this catalyst also displays significant stability in acid at 10 mA cm-2 over 100 h. Overall water splitting using Pt/C as the hydrogen evolution reaction catalyst and Ir0.08 Co2.92 O4 NWs as the OER catalyst takes only a cell voltage of 1.494 V to achieve 10 mA cm-2 with a perfect stability. This work demonstrates a simple approach to produce highly active and acid-stable transition metal oxides electrocatalysts with trace Ir.
Collapse
Affiliation(s)
- Wenli Zhao
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Zhaoyang Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
| | - Zhipeng Pan
- Guizhou Meling Power sources Co., Ltd, Zunyi, Guizhou Province, 563000, China
| | - Yiming Ye
- China Institute of Atomic Energy, Beijing Province, 102413, China
| | - Shilin Hu
- China Institute of Atomic Energy, Beijing Province, 102413, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Rilong Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
| |
Collapse
|
22
|
Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnology 2022; 20:484. [DOI: 10.1186/s12951-022-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractWith the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.
Collapse
|
23
|
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Isolating Single and Few Atoms for Enhanced Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201796. [PMID: 35577552 DOI: 10.1002/adma.202201796] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal catalysts have triggered great interest in the field of catalysis owing to their unique features. Isolated single or few metal atoms can be anchored on substrates via chemical bonding or space confinement to maximize atom utilization efficiency. The key challenge lies in precisely regulating the geometric and electronic structure of the active metal centers, thus significantly influencing the catalytic properties. Although several reviews have been published on the preparation, characterization, and application of single-atom catalysts (SACs), the comprehensive understanding of SACs, dual-atom catalysts (DACs), and atomic clusters has never been systematically summarized. Here, recent advances in the engineering of local environments of state-of-the-art SACs, DACs, and atomic clusters for enhanced catalytic performance are highlighted. Firstly, various synthesis approaches for SACs, DACs, and atomic clusters are presented. Then, special attention is focused on the elucidation of local environments in terms of electronic state and coordination structure. Furthermore, a comprehensive summary of isolated single and few atoms for the applications of thermocatalysis, electrocatalysis, and photocatalysis is provided. Finally, the potential challenges and future opportunities in this emerging field are presented. This review will pave the way to regulate the microenvironment of the active site for boosting catalytic processes.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuaiyu Jiang
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
24
|
Liu H, Rong H, Zhang J. Synergetic Dual-Atom Catalysts: The Next Boom of Atomic Catalysts. CHEMSUSCHEM 2022; 15:e202200498. [PMID: 35686615 DOI: 10.1002/cssc.202200498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Dual-atom catalysts (DACs) are an important branch of single-atom catalysts (SACs), in which the former can effectively break the dilemma faced by the traditional SACs. The synergetic effects between bimetallic atoms provide many active sites, promising to improve catalytic performance and even catalyze more complex reactions. This paper reviews the recent research progresses of two kinds of DACs, including homonuclear and heteronuclear DACs, and their applications in oxygen reduction, carbon dioxide reduction, hydrogen evolution, oxygen evolution, Zn-air batteries, tandem catalytic reactions, and so on. In addition, in order to promote the further development of DACs, the challenges and perspectives of DACs are put forward.
Collapse
Affiliation(s)
- Huimin Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
25
|
Yu Z, Si C, LaGrow AP, Tai Z, Caliebe WA, Tayal A, Sampaio MJ, Sousa JPS, Amorim I, Araujo A, Meng L, Faria JL, Xu J, Li B, Liu L. Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhipeng Yu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
- LSRE-LCM─Laboratory of Separation and Reaction Engineering─Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Chaowei Si
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Alec P. LaGrow
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Zhixin Tai
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Wolfgang A. Caliebe
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Akhil Tayal
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Maria J. Sampaio
- LSRE-LCM─Laboratory of Separation and Reaction Engineering─Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Juliana P. S. Sousa
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Isilda Amorim
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Ana Araujo
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
- LSRE-LCM─Laboratory of Separation and Reaction Engineering─Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Lijian Meng
- Centre of Innovation in Engineering and Industrial Technology, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal
| | - Joaquim L. Faria
- LSRE-LCM─Laboratory of Separation and Reaction Engineering─Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Junyuan Xu
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Bo Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Lifeng Liu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
26
|
Liu YL, Liu XY, Feng L, Shao LX, Li SJ, Tang J, Cheng H, Chen Z, Huang R, Xu HC, Zhuang JL. Two-Dimensional Metal-Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. CHEMSUSCHEM 2022; 15:e202102603. [PMID: 35092355 DOI: 10.1002/cssc.202102603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional metal-organic nanosheets (2D MONs) are an emerging class of ultrathin, porous, and crystalline materials. The organic/inorganic hybrid nature offers MONs distinct advantages over other inorganic nanosheets in terms of diversity of organic ligands and metal notes. Compared to bulk three-dimensional metal-organic frameworks, 2D MONs possess merits of high density and readily accessible catalytic sites, reduced diffusion pathways for reactants/products, and fast electron transport. These features endow MONs with enhanced physical/chemical properties and are ideal for heterogeneous catalysis. In this Review, state-of-the-art synthetic methods for the fabrication of 2D MONs were summarized. The advances of 2D MONs-based materials for electrocatalysis and photocatalysis, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2 RR), and electro-/photocatalytic organic transformations were systematically discussed. Finally, the challenges and perspectives regarding future design and synthesis of 2D MONs for high-performance electrocatalysis and photocatalysis were provided.
Collapse
Affiliation(s)
- Ya-Long Liu
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Xiang-Yue Liu
- College of Chemistry, Key Laboratory for Analytical Science of Food Safety, and Biology, Ministry of Education, Fuzhou University, 350108, Fuzhou, P. R. China
| | - Li Feng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Lan-Xing Shao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Si-Jun Li
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Jing Tang
- College of Chemistry, Key Laboratory for Analytical Science of Food Safety, and Biology, Ministry of Education, Fuzhou University, 350108, Fuzhou, P. R. China
| | - Hu Cheng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| | - Rui Huang
- Stake Key Laboratory of Physical Chemistry of Solid Surface, iChem, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Hai-Chao Xu
- Stake Key Laboratory of Physical Chemistry of Solid Surface, iChem, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 550001, Guiyang, P. R. China
| |
Collapse
|
27
|
Zhao W, Luo C, Lin Y, Wang GB, Chen HM, Kuang P, Yu J. Pt–Ru Dimer Electrocatalyst with Electron Redistribution for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wenkai Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Cheng Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guan-Bo Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
28
|
He T, Santiago ARP, Kong Y, Ahsan MA, Luque R, Du A, Pan H. Atomically Dispersed Heteronuclear Dual-Atom Catalysts: A New Rising Star in Atomic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106091. [PMID: 34897990 DOI: 10.1002/smll.202106091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Atomic catalysts (AC) are gaining extensive research interest as the most active new frontier in heterogeneous catalysis due to their unique electronic structures and maximum atom-utilization efficiencies. Among all the atom catalysts, atomically dispersed heteronuclear dual-atom catalysts (HDACs), which are featured with asymmetric active sites, have recently opened new pathways in the field of advancing atomic catalysis. In this review, the up-to-date investigations on heteronuclear dual-atom catalysts together with the last advances on their theoretical predictions and experimental constructions are summarized. Furthermore, the current experimental synthetic strategies and accessible characterization techniques for these kinds of atomic catalysts, are also discussed. Finally, the crucial challenges in both theoretical and experimental aspects, as well as the future prospects of HDACs for energy-related applications are provided. It is believed that this review will inspire the rational design and synthesis of the new generation of highly effective HDACs.
Collapse
Affiliation(s)
- Tianwei He
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
- Fritz-Haber-Institut, Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Theory Department, Faradayweg 4-6, 14195, Berlin, Germany
| | - Alain R Puente Santiago
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Youchao Kong
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Russia Centre for Materials Science and School of Chemistry and Physics, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str, Moscow, 117198, Russian Federation
| | - Aijun Du
- Queensland University of Technology, Garden Point Campus, Brisbane, Queensland, 4001, Australia
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
29
|
|
30
|
Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022; 51:8923-8956. [DOI: 10.1039/d2cs00233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent developments in the synthesis, modulation and characterization of multi-atom cluster catalysts for electrochemical energy applications.
Collapse
Affiliation(s)
- Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| | - Vikas Reddu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
31
|
Ma Q, Jin H, Zhu J, Li Z, Xu H, Liu B, Zhang Z, Ma J, Mu S. Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102209. [PMID: 34687174 PMCID: PMC8655191 DOI: 10.1002/advs.202102209] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Indexed: 05/05/2023]
Abstract
The highly efficient energy conversion of the polymer-electrolyte-membrane fuel cell (PEMFC) is extremely limited by the sluggish oxygen reduction reaction (ORR) kinetics and poor electrochemical stability of catalysts. Hitherto, to replace costly Pt-based catalysts, non-noble-metal ORR catalysts are developed, among which transition metal-heteroatoms-carbon (TM-H-C) materials present great potential for industrial applications due to their outstanding catalytic activity and low expense. However, their poor stability during testing in a two-electrode system and their high complexity have become a big barrier for commercial applications. Thus, herein, to simplify the research, the typical Fe-N-C material with the relatively simple constitution and structure, is selected as a model catalyst for TM-H-C to explore and improve the stability of such a kind of catalysts. Then, different types of active sites (centers) and coordination in Fe-N-C are systematically summarized and discussed, and the possible attenuation mechanism and strategies are analyzed. Finally, some challenges faced by such catalysts and their prospects are proposed to shed some light on the future development trend of TM-H-C materials for advanced ORR catalysis.
Collapse
Affiliation(s)
- Qianli Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu Hydrogen ValleyFoshan528200P. R. China
| | - Huihui Jin
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zilan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Hanwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Bingshuai Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zhiwei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jingjing Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu Hydrogen ValleyFoshan528200P. R. China
| |
Collapse
|
32
|
Huang B, Chen B, Zhu G, Peng J, Zhang P, Qian Y, Li N. Electrochemical Ammonia Synthesis via NO Reduction on 2D-MOF. Chemphyschem 2021; 23:e202100785. [PMID: 34845837 DOI: 10.1002/cphc.202100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/08/2022]
Abstract
Developing new catalysts, which effectively promote electrocatalytic NO reduction (ENOR), is very important for the industrial field. A two-dimensional (2D) metal-organic framework (MOF) with hexaaminobenzene (HAB) ligands (TM-HAB MOF, TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Rh and Pd) as an electrocatalyst of ENOR has been systematically explored in this work by means of well-defined density functional theory (DFT) calculations. We predicted the impacts of the coordination structure of different MOFs on its catalytic performance, and found that the suitable candidates are the Co- and Rh-HAB MOFs due to moderate binding strength between NO and substrates. The further calculation indicated that Co-HAB MOF has the best ENOR catalytic activity with a limiting potential of -0.26 V toward NH 3 product at low NO coverage, yet NO reduction to N 2 O at high NO coverage has been limited due to high limiting potential. The scaling relationship with a good correlation coefficient between several electronic properties and the adsorption Gibbs free energy change of *NO (ΔG *NO ) were found, which implied that ΔG *NO can be used as a simple descriptor for screening out suitable electrocatalysts. This work offers a new paradigm for ENOR toward NH 3 under ambient conditions.
Collapse
Affiliation(s)
- Bin Huang
- East China University of Technology, Departmen of Chemistry, Biology, and Materials Science, CHINA
| | - Bibo Chen
- East China University of Technology, School of Chemistry, Biology, and Materials Science, CHINA
| | - Guoping Zhu
- East China University of Technology, School of Chemistry, Biology, and Materials Science, CHINA
| | - Jiahe Peng
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, CHINA
| | - Peng Zhang
- Zhengzhou University, School of Materials Science and Engineering, CHINA
| | - Yong Qian
- East China University of Technology, School of Chemistry, Biology, and Materials Science, CHINA
| | - Neng Li
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, 122 Luoshi Road,, Hongshan District, 430070, Wuhan, CHINA
| |
Collapse
|
33
|
Double shelled hollow CoS 2@MoS 2@NiS 2 polyhedron as advanced trifunctional electrocatalyst for zinc-air battery and self-powered overall water splitting. J Colloid Interface Sci 2021; 610:653-662. [PMID: 34848059 DOI: 10.1016/j.jcis.2021.11.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022]
Abstract
Electrocatalysts play important role in various energy conversion and storage devices. The catalytic performance of electrocatalysts can be enhanced through the increasement of intrinsic catalytic activity by optimizing electronic structure and the improvement of exposed active sites by designing proper nanostructures. In this work, CoS2@MoS2@NiS2 nano polyhedron with double-shelled structure was prepared using metal organic framework as a precursor. Due to the rational integration of multifunctional active center, the strong electronic interaction of the various component, the high electrochemical surface area and shortened mass transport induced by the special structure, CoS2@MoS2@NiS2 exhibits high catalytic activity for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, low overpotentials of 156 and 200 mV was achieved to deliver a current density of 10 mA cm-2 for HER and OER, and a high half-wave potential of 0.80 V was observed for ORR. More importantly, the Zn-air battery assembled by CoS2@MoS2@NiS2 exhibits a high-power density of 80.28 mW cm-2 and could effectively drive overall water splitting. This work provides a new platform for designing multifunctional catalysts with high activity for energy conversion and storage.
Collapse
|
34
|
Affiliation(s)
- Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education School of Public Health Guizhou Medical University Guiyang 550025 P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| |
Collapse
|
35
|
Li SM, Shi Y, Zhang JJ, Wang Y, Wang H, Lu JX. Atomically Dispersed Copper on N-Doped Carbon Nanosheets for Electrocatalytic Synthesis of Carbamates from CO 2 as a C 1 Source. CHEMSUSCHEM 2021; 14:2050-2055. [PMID: 33686778 DOI: 10.1002/cssc.202100342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of carbamates by electrocatalytic reduction of CO2 is an effective method to realize the utilization of CO2 resources. The development of high-performance electrocatalysts to complete this process more efficiently is of great significance to sustainable development. Owing to their unique structural characteristics, single-atom catalysts are expected to promote the reaction process more efficiently. In this study, an atomically dispersed Cu species on N-doped carbon nanosheet composite material (Cu-N-C) was prepared by metal-organic framework derivatization. Compared with traditional Cu bulk electrodes, the Cu-N-C material has better catalytic performance for the synthesis of methyl N-phenylcarbamate; and the optimized yield reached 71 % at room temperature and normal pressure. The Cu-N-C material has good stability that the catalytic performance does not decrease after repeated use for 10 times. In addition, the Cu-N-C material has good applicability to this catalytic system, and a variety of amines can be smoothly converted into corresponding carbamates.
Collapse
Affiliation(s)
- Shi-Ming Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Yi Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Jing-Jie Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Ying Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Huan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Jia-Xing Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| |
Collapse
|