1
|
Torres FG, Troncoso OP, Urtecho A, Soto P, Pachas B. Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13179-13196. [PMID: 38865700 DOI: 10.1021/acsami.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In recent years, polysaccharides have emerged as a promising alternative for the development of environmentally friendly materials. Polysaccharide-based materials have been mainly studied for applications in the food, packaging, and biomedical industries. However, many investigations report processing routes and treatments that enable the modification of the inherent properties of polysaccharides, making them useful as materials for energy applications. The control of the ionic and electronic conductivities of polysaccharide-based materials allows for the development of solid electrolytes and electrodes. The incorporation of conductive and semiconductive phases can modify the permittivities of polysaccharides, increasing their capacity for charge storage, making them useful as active surfaces of energy harvesting devices such as triboelectric nanogenerators. Polysaccharides are inexpensive and abundant and could be considered as a suitable option for the development and improvement of energy devices. This review provides an overview of the main research work related to the use of both common commercially available polysaccharides and local native polysaccharides, including starch, chitosan, carrageenan, ulvan, agar, and bacterial cellulose. Solid and gel electrolytes derived from polysaccharides show a wide range of ionic conductivities from 0.0173 × 10-3 to 80.9 × 10-3 S cm-1. Electrodes made from polysaccharides show good specific capacitances ranging from 8 to 753 F g-1 and current densities from 0.05 to 5 A g-1. Active surfaces based on polysaccharides show promising results with power densities ranging from 0.15 to 16 100 mW m-2. These investigations suggest that in the future polysaccharides could become suitable materials to replace some synthetic polymers used in the fabrication of energy storage devices, including batteries, supercapacitors, and energy harvesting devices.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Adrián Urtecho
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Percy Soto
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Bruce Pachas
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| |
Collapse
|
2
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Verma SK, Tyagi V, Sonika, Dutta T, Mishra SK. Flexible and wearable electronic systems based on 2D hydrogel composites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6300-6322. [PMID: 39219494 DOI: 10.1039/d4ay01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flexible electronics is a rapidly developing field of study, which integrates many other fields, including materials science, biology, chemistry, physics, and electrical engineering. Despite their vast potential, the widespread utilization of flexible electronics is hindered by several constraints, including elevated Young's modulus, inadequate biocompatibility, and diminished responsiveness. Therefore, it is necessary to develop innovative materials aimed at overcoming these hurdles and catalysing their practical implementation. In these materials, hydrogels are particularly promising owing to their three-dimensional crosslinked hydrated polymer networks and exceptional properties, positioning them as leading candidates for the development of future flexible electronics.
Collapse
Affiliation(s)
- Sushil Kumar Verma
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Varee Tyagi
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sonika
- Department of Physics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. 711103, India
| | - Satyendra Kumar Mishra
- Space and Resilient Communications and Systems (SRCOM), Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain.
| |
Collapse
|
4
|
Ding J, Yang Y, Poisson J, He Y, Zhang H, Zhang Y, Bao Y, Chen S, Chen YM, Zhang K. Recent Advances in Biopolymer-Based Hydrogel Electrolytes for Flexible Supercapacitors. ACS ENERGY LETTERS 2024; 9:1803-1825. [PMID: 38633997 PMCID: PMC11019642 DOI: 10.1021/acsenergylett.3c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Growing concern regarding the impact of fossil fuels has led to demands for the development of green and renewable materials for advanced electrochemical energy storage devices. Biopolymers with unique hierarchical structures and physicochemical properties, serving as an appealing platform for the advancement of sustainable energy, have found widespread application in the gel electrolytes of supercapacitors. In this Review, we outline the structure and characteristics of various biopolymers, discuss the proposed mechanisms and assess the evaluation metrics of gel electrolytes in supercapacitor devices, and further analyze the roles of biopolymer materials in this context. The state-of-the-art electrochemical performance of biopolymer-based hydrogel electrolytes for supercapacitors and their multiple functionalities are summarized, while underscoring the current technical challenges and potential solutions. This Review is intended to offer a thorough overview of recent developments in biopolymer-based hydrogel electrolytes, highlighting research concerning green and sustainable energy storage devices and potential avenues for further development.
Collapse
Affiliation(s)
- Jiansen Ding
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Yang Yang
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jade Poisson
- Sustainable
Materials and Chemistry, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| | - Yuan He
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Hua Zhang
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Nanchang 330022, P. R. China
| | - Ying Zhang
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Yulan Bao
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Nanchang 330022, P. R. China
| | - Shuiliang Chen
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Nanchang 330022, P. R. China
| | - Yong Mei Chen
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Kai Zhang
- Sustainable
Materials and Chemistry, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Song Y, Zhao G, Zhang S, Xie C, Yang R, Li X. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries. Carbohydr Polym 2024; 329:121530. [PMID: 38286525 DOI: 10.1016/j.carbpol.2023.121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Separators are indispensable components in lithium-ion batteries (LIBs), providing efficient pathways for lithium ions to travel and isolating the positive and negative electrodes to avoid short circuits. However, traditional polyolefin-based separators exhibit inferior electrolyte affinities, limited porosities, and low thermal stabilities. In this study, a novel method was developed to prepare chitosan micro/nanofiber membranes as LIB separators using natural materials. The pore sizes of the chitosan micro/nanofibers separators were modulated by changing the diameters of the chitosan fibers. The results demonstrated that the chitosan nanofiber separators (CSNFs) had superior electrolyte uptake (281 %), excellent thermal dimensional stability, and electrochemical performance in LiFePO4/Li half-cell, as indicated by the higher discharge capacity after 100 cycles, and higher rate capacity than commercial Celgard2325 separator. This study paves the way for the fabrication of eco-efficient and environment-friendly separators for high-performance LIBs.
Collapse
Affiliation(s)
- Yanghui Song
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sihan Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runde Yang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China.
| |
Collapse
|
6
|
Zhang R, Zhang Z, Xu P, Xu J, Gao Y, Gao G. Cellulose nanofiber hydrogel with high conductivity electrolytes for high voltage flexible supercapacitors. Carbohydr Polym 2024; 326:121654. [PMID: 38142084 DOI: 10.1016/j.carbpol.2023.121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Although flexible double layer capacitors based on hydrogels overcome the drawbacks of commercial double layer capacitors such as low safety and non-deformability, it is still considered as attractive challenges to achieve high conductivity for hydrogel electrolytes as well as high operating voltages for hydrogel flexible supercapacitors. In this paper, ion migration channels were engineered by immobilizing positive and negative charges on polymer skeleton and dispersing cellulose nanofibers in the polymerized polyelectrolyte network, providing ultra-high ionic conductivity (103 mS cm-1). In addition, K3[Fe(CN)6] was introduced through a soaking method, leading to redox reactions on the surface of carbon electrode during charging and discharging, supporting a relatively wide voltage window (1.8 V). Moreover, the specific capacitance at high current remained 55 % of the specific capacitance at low current, indicating excellent rate performance. In addition, the device displayed high cycling stability (80.05 % after 10,000 cycles). Notably, we successfully light up the red LED with only one device. Accordingly, this work provides a feasible design concept for the development of cellulose nanofibers (CNF) hydrogel-based solid-state electrolyte with high conductivity for flexible supercapacitors with wide potential window and high energy density.
Collapse
Affiliation(s)
- Rongda Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zhixin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Ping Xu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jinxin Xu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yiyan Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
7
|
Das HT, Balaji T E, Mohapatra S, Dutta S, Das N, Assiri MA. Advance Technologies in Biodegradable Flexible Solid-State Supercapacitors: A Mini Review on Clean and Sustainable Energy. CHEM REC 2024; 24:e202300226. [PMID: 37728184 DOI: 10.1002/tcr.202300226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/30/2023] [Indexed: 09/21/2023]
Abstract
In the recent times research towards solid state supercapacitors (SSS) have increased drastically due to the promising performance in futuristic technologies particularly in portable and flexible electronics like smart watches, smart fabrics, foldable smartphones and tablets. Also, when compared to supercapacitors using liquid electrolyte, solid electrolyte has several advantages like high energy density, safety, high cycle life, flexible form factor, and less environmental impact. The crucial factor determining the sustainability of a technology is the eco-friendliness since the natural resources are being exploited in a wide scale. Numerous studies have focused on biodegradable materials for supercapacitor electrodes, electrolytes, and other inactive components. Making use of these biodegradable materials to design a SSS enables the technology to sustain for a very long time since biodegradable materials are not only environment friendly but also, they show relatively high performance. This review focuses on recent progress of different biodegradable electrodes, and electrolytes along with their properties, electrochemical performance and biodegradable capabilities for SSS have been analyzed and provides a concise summary enabling readers to understand the importance of biodegradable materials and to narrow down the research in a more rational way.
Collapse
Affiliation(s)
- Himadri Tanaya Das
- Centre of Excellence for Advanced Materials and Applications, Utkal University, Bhubaneswar, 751004, Odisha, India
| | - Elango Balaji T
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | | | - Swapnamoy Dutta
- Bredesen Center for Interdisciplinary Research and Education, University of Tennessee Knoxville, Knoxville, TN, 37966, USA
| | - Nigamananda Das
- Centre of Excellence for Advanced Materials and Applications, Utkal University, Bhubaneswar, 751004, Odisha, India
- Department of Chemistry, Utkal University, Bhubaneswar, 751004, Odisha, India
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Zeng J, Chen H, Dong L, Wei L, Guo X. Designing of zwitterionic proline hydrogel electrolytes for anti-freezing supercapacitors. J Colloid Interface Sci 2023; 652:856-865. [PMID: 37633110 DOI: 10.1016/j.jcis.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/28/2023]
Abstract
Hydrogel electrolytes containing a large amount of freezable water tend to freeze at subzero temperatures, which catastrophically reduces their ionic conductivity and thus limits their practical applications. In this work, we propose a new type anti-freezing hydrogel electrolyte based on an additive of zwitterionic proline, which can maintain high ionic conductivities of hydrogel electrolytes at subzero temperatures. The unique zwitterionic structure leads to several interesting characters like strong hydration, strong ionic interactions and low self-associations, which is proved to be the keys for the high performance of hydrogel electrolytes under low temperatures. As a result, the proline hydrogel electrolytes show a high ionic conductivity of 4.2 mS cm-1 even at -40 °C. The activated carbon electrode of supercapacitors based on proline hydrogel electrolytes delivers high specific capacitances of 145.8 (at 0.5 A g-1) and 116.1 F g-1 (at 0.5 A g-1) at 25 and -30 °C, respectively. Furthermore, the specific capacitance still shows a high retention of 71% after 12,000 charge/discharge cycles at -30 °C, confirming the good low-temperature adaptability. Such anti-freezing electrolytes with high ionic conductivity will open up a new avenue for anti-freezing energy storage devices, not limited to supercapacitors.
Collapse
Affiliation(s)
- Juan Zeng
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Hao Chen
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liubing Dong
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| | - Lu Wei
- State Key Laboratory of Material Processing and Die & Mould Technology, Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Guo
- State Key Laboratory of Material Processing and Die & Mould Technology, Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Shang Z, Liu G, Sun Y, Li C, Zhao N, Chen Z, Guo R, Zheng Z, Zhou F, Liu W. Mussel-Inspired Wet-Adhesive Multifunctional Organohydrogel with Extreme Environmental Tolerance for Wearable Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44342-44353. [PMID: 37668314 DOI: 10.1021/acsami.3c10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
As a flexible artificial material, the conductive hydrogel has broad application prospects in flexible wearable electronics, soft robotics, and biomedical monitoring. However, traditional hydrogels still face many challenges, such as long-term stability, availability in extreme environments, and long-lasting adhesion to the skin surface under sweaty or humid conditions. To circumvent the above issues, one kind of ionic conductive hydrogel was prepared by a simple one-pot method that dissolved chitosan (CS), 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), tannic acid (TA), and 2-methoxy-ethyl acrylate (MEA) into dimethyl sulfoxide (DMSO)/H2O solvent. The resulting hydrogel showed excellent tensile properties (1440%), extreme environmental tolerance (-40-60 °C), adhesion (72 KPa at porcine skin), ionic conductivity (0.87 S m-1), and high-efficiency antibacterial property. Furthermore, the produced organohydrogel strain sensor exhibited high strain sensitivity (GF = 4.07), excellent signal sensing capabilities (human joint movement, microexpression, and sound signals), and long-term cyclic stability (400 cycles). Looking beyond, this work provides a simple and promising strategy for using hydrogel sensors in extreme environments for e-skin, health monitoring, and wearable electronic devices.
Collapse
Affiliation(s)
- Zhenling Shang
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guoqiang Liu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yue Sun
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenghao Li
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Nan Zhao
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhuo Chen
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruisheng Guo
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zijian Zheng
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 00000,SAR, China
| | - Feng Zhou
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Construction of PVA-lignosulfonate hydrogels for improved mechanical performances and all-in-one flexible supercapacitors. Int J Biol Macromol 2023; 225:1494-1504. [PMID: 36436604 DOI: 10.1016/j.ijbiomac.2022.11.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
All-in-one supercapacitors are one of the best candidates for realizing flexible supercapacitors because of their outstanding flexibility and stability. The pursuit of improved electrochemical performance while meeting the requirements of flexible functionalization has always been a long-term goal. To this aim, lignosulfonate (LS) can be used in the field of all-in-one supercapacitors and contribute to its unique three-dimensional structure and abundant functional groups. By doping a small amount of LS, a simple approach is developed to achieve a one-step improvement in electrochemical performance and flexible functional design in this study. PVA-lignosulfonate hydrogel (PLH) obtains a compact and regular three-dimensional porous structure, higher ionic conductivity (0.17 S/cm), bending flexibility, and compression resistance. Polyaniline (PANI) based solid-state supercapacitors PANI-PVA and PANI-PLH show specific capacitance values of 505 and 558 mF/cm2, respectively, at a current density of 0.5 mA/cm2. After 5000 charge-discharge cycles, the capacitance retention rate increases from 53 % to 73 %, and the PANI-PLH can maintain the stability of electrochemical performance under bending, folding, puncturing, and squeezing. After 1600 times folding, the capacity remains almost 100 %. This study presents a one-step optimization for the construction of functional and high-performance all-in-one supercapacitors in a simple way and a novel idea for the potential application of the high-value lignin.
Collapse
|
11
|
Zhou Y, Wang T, Peng S, Yao T, Zhu Y, Xu B. Thin carbon nanotube coiled around thick branched carbon nanotube composite electrodes for high-performance and flexible supercapacitors. NEW J CHEM 2023. [DOI: 10.1039/d3nj00735a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
TCNT/BCNT composites are designed for flexible supercapacitors that exhibit exceptional cycling performance and remarkable flexibility over 10 000 cycles under bending.
Collapse
|
12
|
Xin F, Lyu Q. A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels 2022; 9:gels9010007. [PMID: 36661775 PMCID: PMC9858193 DOI: 10.3390/gels9010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels, as a series of three-dimensional, crosslinked, hydrophilic network polymers, exhibit extraordinary properties in softness, mechanical robustness and biocompatibility, which have been extensively utilized in various fields, especially for electronic devices. However, since hydrogels contain plenty of water, the mechanical and electrochemical properties are susceptible to temperature. The thermal characteristics of hydrogels can significantly affect the performance of flexible electronic devices. In this review, recent research on the thermal characteristics of hydrogels and their applications in electronic devices is summarized. The focus of future work is also proposed. The thermal stability, thermoresponsiveness and thermal conductivity of hydrogels are discussed in detail. Anti-freezing and anti-drying properties are the critical points for the thermal stability of hydrogels. Methods such as introducing soluble ions and organic solvents into hydrogels, forming ionogels, modifying polymer chains and incorporating nanomaterials can improve the thermal stability of hydrogels under extreme environments. In addition, the critical solution temperature is crucial for thermoresponsive hydrogels. The thermoresponsive capacity of hydrogels is usually affected by the composition, concentration, crosslinking degree and hydrophilic/hydrophobic characteristics of copolymers. In addition, the thermal conductivity of hydrogels plays a vital role in the electronics applications. Adding nanocomposites into hydrogels is an effective way to enhance the thermal conductivity of hydrogels.
Collapse
Affiliation(s)
- Fei Xin
- Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi’an 710071, China
- Correspondence:
| | - Qiang Lyu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
13
|
Mu H, Zhang Z, Lian C, Tian X, Wang G. Integrated Construction Improving Electrochemical Performance of Stretchable Supercapacitors Based on Ant-Nest Amphiphilic Gel Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204357. [PMID: 36269875 DOI: 10.1002/smll.202204357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Aqueous integrated stretchable supercapacitors (ISSCs) have attracted extensive attention due to the intrinsic safety in future wearable electronics. However, aqueous ISSCs usually suffer from low energy density and poor dynamic deformation stability owing to the conventional hydrogel electrolytes' narrow electrochemical stability window (ESW) and dissatisfied interface bonding. Herein, an ant-nest amphiphilic polyurethane hydro/organogel electrolyte (sAPUGE) with a wide ESW (≈2.2 V) and superb self-adhesion is prepared by electrospinning, which interacts with carbon-based stretchable electrodes for the construction of flame-retardant PU-based sAPUGE-ISSC. Benefitting from the synergistic effect of chemical bonding and mechanical meshing between the electrode and gel electrolyte interface, as-assembled sAPUGE-ISSC delivers a high energy density of 13.7 mWh cm-3 (at a power density of 0.126 W cm-3 ) and outstanding dynamic deformation stability (98.3% capacitance retention after 500 stretching cycles under 100% strain). This unique hydro/organogel electrolyte provides a pathway toward the next generation of wearable energy products in modern electronics.
Collapse
Affiliation(s)
- Hongchun Mu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zekai Zhang
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaohui Tian
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Gengchao Wang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
14
|
Deep eutectic solvents-assisted stimuli-responsive smart hydrogels – a review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Zhang K, Pang Y, Chen C, Wu M, Liu Y, Yu S, Li L, Ji Z, Pang J. Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydr Polym 2022; 293:119673. [DOI: 10.1016/j.carbpol.2022.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
|
16
|
Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Wang PH, Tseng LH, Li WC, Lin CH, Wen TC. Zwitterionic semi-IPN electrolyte with high ionic conductivity and high modulus achieving flexible 2.4 V aqueous supercapacitors. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|