1
|
Jeong S, Chae JA, Kim HJ, Jung D, Kim YA, Choi E, Kim H. Hierarchical Design of Functional, Fibrous, and Microporous Polymer Monoliths for the Molecular Recognition of Diethylstilbestrol. Anal Chem 2021; 93:13513-13519. [PMID: 34596384 DOI: 10.1021/acs.analchem.1c02393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper demonstrates the hierarchical design of functional, fibrous polymer monoliths. The monoliths are composed of conjugated microporous polymers that not only are embedded with heteroatoms but also feature fibrous yet compressible structures due to the in situ self-assembly process that occurs during the polymerization process. Therefore, the doped nitrogen atoms can allow the growth of zeolitic imidazolate framework (ZIF) nanocrystals, which causes the homogeneous encapsulation of individual fibers. The resulting hybrid monoliths exhibit enhanced physical properties as well as catalytic activity, allowing the formation of an additional coating layer via a thiol-epoxy reaction. The deliberate inclusion of template molecules during the reaction forms molecularly imprinted sites on the fibers to afford functional monoliths. As a proof of concept, the hierarchically designed materials are able to show effective recognition properties toward diethylstilbestrol, an endocrine disruptor, taking advantage of the binding sites that selectively capture the analyte molecules and the fibrous morphology that increases the accessibility of these binding sites. We envisage that the incorporation of various heteroatoms or nanocrystals will bring about the bespoke design of advanced monoliths with autonomous functions, leading to smart textile systems.
Collapse
Affiliation(s)
- Songah Jeong
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Ji Ae Chae
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hea Ji Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Doyoung Jung
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Yoong Ahm Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.,Korea Institute of Medical Microrobotics (KIMIRo), 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
2
|
Jeong S, Yoo SW, Kim HJ, Park J, Kim JW, Lee C, Kim H. Recent Progress on Molecular Photoacoustic Imaging with Carbon-Based Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5643. [PMID: 34640053 PMCID: PMC8510032 DOI: 10.3390/ma14195643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
For biomedical imaging, the interest in noninvasive imaging methods is ever increasing. Among many modalities, photoacoustic imaging (PAI), which is a combination of optical and ultrasound imaging techniques, has received attention because of its unique advantages such as high spatial resolution, deep penetration, and safety. Incorporation of exogenous imaging agents further amplifies the effective value of PAI, since they can deliver other specified functions in addition to imaging. For these agents, carbon-based materials can show a large specific surface area and interesting optoelectronic properties, which increase their effectiveness and have proved their potential in providing a theragnostic platform (diagnosis + therapy) that is essential for clinical use. In this review, we introduce the current state of the PAI modality, address recent progress on PAI imaging that takes advantage of carbon-based agents, and offer a future perspective on advanced PAI systems using carbon-based agents.
Collapse
Affiliation(s)
- Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
| | - Hea Ji Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Jieun Park
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Ji Woo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Changho Lee
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju 61469, Korea
- Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| |
Collapse
|
3
|
Chae JA, Jeong S, Kim HJ, Tojo T, Oh Y, Chi WS, Yoon H, Kim H. Fibrous mesoporous polymer monoliths: macromolecular design and enhanced photocatalytic degradation of aromatic dyes. Polym Chem 2021. [DOI: 10.1039/d1py00049g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A bottom-up design provides polymer monoliths comprising two monomers that form mesoporous, compressible, random fiber networks, as in marine sponges.
Collapse
Affiliation(s)
- Ji Ae Chae
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Songah Jeong
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Hea Ji Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Tomohiro Tojo
- Department of Electrical and Electronic Engineering
- Faculty of Science and Technology
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| | - Yuree Oh
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Won Seok Chi
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| |
Collapse
|