1
|
Dong W, Wang C, Zou Y, Wang W, Liu J. NAD(P)H-Inspired CO 2 Reduction Based on Organohydrides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67073-67086. [PMID: 38551646 DOI: 10.1021/acsami.4c01101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The conversion of CO2 into value-added chemicals and fuels using stable, cost-effective, and eco-friendly metal-free catalysts is a promising technology to mitigate the global environmental crisis. In the Calvin cycle of natural photosynthesis, CO2 reduction (CO2R) is achieved using the cofactor NADPH as the reducing agent through 2e-/1H+ or H- transfer. Consequently, inspired by NAD(P)H, a series of organohydrides with adjustable reducibility show remarkable potential for efficient metal-free CO2R. In this review, we first summarize the photosensitizers for NAD(P)H regeneration and list the representative photoenzyme CO2R system. Then, we introduce the NAD(P)H-inspired organohydrides and their applications in redox reactions. Furthermore, we discuss recent progress and breakthroughs by utilizing organohydrides as metal-free CO2R catalysts. Moreover, we delve into the reaction mechanisms and applications of these organohydrides, shedding light on their potential as sustainable alternatives to metal-based CO2R catalysts. Finally, we offer insights into the prospects and potential directions for advancing this intriguing avenue of organohydride-based catalysts for CO2R.
Collapse
Affiliation(s)
- Wenjin Dong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Chuanjun Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yutai Zou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jian Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Choudhury J, Bhardwaj R, Mandal SK. Hydride Transfer-Based CO 2 Reduction Catalysis: Navigating Metal Hydride to Organic Hydride in the Catalytic Loop. Acc Chem Res 2024; 57:2859-2871. [PMID: 39292623 DOI: 10.1021/acs.accounts.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
ConspectusThe reductive conversion of carbon dioxide (CO2) into value-added products is a process of immense importance. In the context of rising CO2 concentration in the atmosphere and the detrimental effects it is having on the biosphere, use of alternative fuels which can offer a low-carbon or carbon-neutral pathway for storage and utilization of low-carbon energy by maintaining the net atmospheric CO2 concentration might be a prospective solution. Among the wide variety of reduced products that can be obtained from CO2, formic acid and formate salts are particularly important due to their ability to be used as an alternative fuel or a reversible hydrogen storage material. Utilization of molecular catalysts for CO2 conversion offers several advantages such as high selectivity, mechanistic clarity, versatility, and stability, making them attractive for thermochemical and electro/photochemical CO2 reduction processes. The presence of N-heterocyclic carbene (NHC) ligands in transition-metal-based molecular catalysts enhances the stability of the catalysts under harsh reaction conditions, such as high pressure, high temperature, and reductive environments, providing crucial benefits for sustained catalytic activity and longevity. Though the development of metal complex-based catalysts is essential to addressing the challenge of CO2 reduction, the possibility of using purely organic compounds as catalysts for this transformation is lucrative from the aspect of developing a truly sustainable protocol with photosynthesis being its biggest inspiration. We begin this Account by examining our systematic development of molecular metal complexes based on NHC ligands for the chemical upgradation of CO2 to formic acid/formate salt. In such cases, the ability of NHCs to act as strong σ-donor ligands for a greater hydride transfer propensity is discussed and analyzed. The reports range from catalytic ambient- and high-pressure CO2 hydrogenation to CO2 transfer-hydrogenation. Coupling of CO2 capture methodologies with CO2 conversion is also discussed. A case is made for the heterogenization of one of the highly efficient metal-NHC catalysts to develop a self-supported single-site catalyst for practical applications. Finally, our recent success of developing a novel organic catalyst system inspired from the natural NADP+/NADPH-based hydride-transfer redox couple that is active in photosynthetic CO2 reduction has been discussed. This catalyst is designed based on a bis-imidazolium-embedded heterohelicene with a central pyridine ring and is capable of electrocatalytically converting CO2 to HCO2H with TON values 100-1000 times greater than the existing reported values achieved so far by organic catalysts. Overall, we believe that the results of hydride transfer-based CO2 reduction catalysis presented in this Account hold significant implications beyond our work and have the potential for motivating future research toward further development in this important field.
Collapse
Affiliation(s)
- Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Ritu Bhardwaj
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Sanajit Kumar Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
3
|
Gotgi NM, Jain JS, Pal R, Ghosh D. Electrochemical and photochemical reaction of isatins: a decade update. Org Biomol Chem 2024; 22:3352-3375. [PMID: 38607323 DOI: 10.1039/d4ob00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This review presents the latest progress in photochemical and electrochemical reactions involving isatins. Isatin and its functionalized scaffolds e.g., oxindoles, spirooxindoles, and quinolines are privileged heterocycles as they are largely present in several agrochemical, natural products, and pharmaceuticals. Thus, the functionalization of isatins using sustainable approaches, i.e., electro- and photochemical methods is of recent research interest worldwide. In this review, we have discussed most of the important reactions of isatins based on types of bond formation involved under electro- and photochemical conditions over the last decade. The reaction mechanism for each reaction has been discussed in detail to offer an inclusive guide to readers. Lastly, a summary of current challenges and the future outlook toward the development of effective electrochemical and photochemical methods for the reaction of isatins is also presented.
Collapse
Affiliation(s)
- Nandini M Gotgi
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - J Saurab Jain
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - Rita Pal
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - Debashis Ghosh
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
- Department of Chemistry, St. Joseph's College (Autonomous), 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India
| |
Collapse
|
4
|
Karak P, Mandal SK, Choudhury J. Bis-Imidazolium-Embedded Heterohelicene: A Regenerable NADP + Cofactor Analogue for Electrocatalytic CO 2 Reduction. J Am Chem Soc 2023; 145:7230-7241. [PMID: 36944228 DOI: 10.1021/jacs.2c12883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Biomimetic NAD(P)H-type organic hydride donors have recently been advocated as potential candidates to act as metal-free catalysts for fuel-forming reactions such as the reduction of CO2 to formic acid and methanol, similar to the natural photosynthesis process of fixing CO2 into carbohydrates. Although these artificial synthetic organic hydrides are extensively used in organic reduction chemistry in a stoichiometric manner, translating them into catalysts has been challenging due to problems associated with the regeneration of these hydride species under applied reaction conditions. A recent discovery of the possibility of their regeneration under electrochemical conditions via a proton-coupled electron-transfer pathway triggered intense research to accomplish their catalytic use in electrochemical CO2 reduction reactions (eCO2RR). However, success is yet to be realized to term them as "true" catalysts, as the typical turnover numbers (TONs) of the eCO2RR processes on inert electrodes for the production of formic acid and/or methanol reported so far are still in the order of 10-3-10-2; thus, sub-stoichiometric only! Herein, we report a novel class of structurally engineered heterohelicene-based organic hydride donor with a proof-of-principle demonstration of catalytic electrochemical CO2 reduction reaction showing a significantly improved activity with more than stoichiometric turnover featuring a 100-1000-fold enhancement of the existing TON values. Mechanistic investigations suggested the critical role of the two cationic imidazolium motifs along with the extensive π-conjugation present in the backbone of the heterohelicene molecules in accessing and stabilizing various radical species involved in the generation and transfer of hydride, via multielectron-transfer steps in the electrochemical process.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Sanajit Kumar Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
5
|
Ferrer M, Alkorta I, Elguero J, Oliva‐Enrich JM. Use of 5,10-Disubstituted Dibenzoazaborines and Dibenzophosphaborines as Cyclic Supports of Frustrated Lewis Pairs for the Capture of CO 2. Chemphyschem 2022; 23:e202200204. [PMID: 35703469 PMCID: PMC9796958 DOI: 10.1002/cphc.202200204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Indexed: 01/07/2023]
Abstract
The reactivity of 5,10-disubstituted dibenzoazaborines and dibenzophosphaborines towards carbon dioxide was studied at the DFT, M06-2X/def2-TZVP, computational level. The profile of this reaction comprises of three stationary points: the pre-reactive complex and adduct minima and the transition state(TS) linking both minima. Initial results show that dibenzoazaborines derivatives are less suitable to form adducts with CO2 than dibenzophosphaborine systems. The influence of the basicity on the P atom and the acidity on the B center of the dibenzophosphaborine in the reaction with CO2 was also explored. Thus, an equation was developed relating the properties (acidity, basicity and boron hybridization) of the isolated dibenzophosphaborine derivatives with the adduct energy. We found that modulation of the boron acidity allows to obtain more stable adducts than the pre-reactive complexes and isolated monomers.
Collapse
Affiliation(s)
- Maxime Ferrer
- Instituto de Química Médica (CSIC)Juan de la Cierva, 328006MadridSpain
- PhD Program in Theoretical Chemistry and Computational ModelingDoctoral SchoolUniversidad Autónoma de Madrid28049MadridSpain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC)Juan de la Cierva, 328006MadridSpain
| | - Jose Elguero
- Instituto de Química Médica (CSIC)Juan de la Cierva, 328006MadridSpain
| | | |
Collapse
|
6
|
Ruccolo S, Sambade D, Shlian DG, Amemiya E, Parkin G. Catalytic reduction of carbon dioxide by a zinc hydride compound, [Tptm]ZnH, and conversion to the methanol level. Dalton Trans 2022; 51:5868-5877. [PMID: 35343979 DOI: 10.1039/d1dt04156h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc hydride compound, [Tptm]ZnH, may achieve the reduction of CO2 by (RO)3SiH (R = Me, Et) to the methanol oxidation level, (MeO)xSi(OR)4-x, via the formate species, HCO2Si(OR)3. However, because insertion of CO2 into the Zn-H bond is more facile than insertion of HCO2Si(OR)3, conversion of HCO2Si(OR)3 to the methanol level only occurs to a significant extent in the absence of CO2.
Collapse
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - David Sambade
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
7
|
Buss JA, Shida N, He T, Agapie T. Carbon Dioxide Reduction with Dihydrogen and Silanes at Low-Valent Molybdenum Terphenyl Diphosphine Complexes: Reductant Identity Dictates Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Naoki Shida
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Tianyi He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Hua SA, Paul LA, Oelschlegel M, Dechert S, Meyer F, Siewert I. A Bioinspired Disulfide/Dithiol Redox Switch in a Rhenium Complex as Proton, H Atom, and Hydride Transfer Reagent. J Am Chem Soc 2021; 143:6238-6247. [PMID: 33861085 DOI: 10.1021/jacs.1c01763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of multiple electrons and protons is of crucial importance in many reactions relevant in biology and chemistry. Natural redox-active cofactors are capable of storing and releasing electrons and protons under relatively mild conditions and thus serve as blueprints for synthetic proton-coupled electron transfer (PCET) reagents. Inspired by the prominence of the 2e-/2H+ disulfide/dithiol couple in biology, we investigate herein the diverse PCET reactivity of a Re complex equipped with a bipyridine ligand featuring a unique SH···-S moiety in the backbone. The disulfide bond in fac-[Re(S-Sbpy)(CO)3Cl] (1, S-Sbpy = [1,2]dithiino[4,3-b:5,6-b']dipyridine) undergoes two successive reductions at equal potentials of -1.16 V vs Fc+|0 at room temperature forming [Re(S2bpy)(CO)3Cl]2- (12-, S2bpy = [2,2'-bipyridine]-3,3'-bis(thiolate)). 12- has two adjacent thiolate functions at the bpy periphery, which can be protonated forming the S-H···-S unit, 1H-. The disulfide/dithiol switch exhibits a rich PCET reactivity and can release a proton (ΔG°H+ = 34 kcal mol-1, pKa = 24.7), an H atom (ΔG°H• = 59 kcal mol-1), or a hydride ion (ΔG°H- = 60 kcal mol-1) as demonstrated in the reactivity with various organic test substrates.
Collapse
Affiliation(s)
- Shao-An Hua
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Lucas A Paul
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Manuel Oelschlegel
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany.,Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstraße 6, D-37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany.,Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstraße 6, D-37077 Göttingen, Germany
| |
Collapse
|