1
|
Monti NBD, Zeng J, Castellino M, Porro S, Bagheri M, Pirri CF, Chiodoni A, Bejtka K. Effects of Annealing Conditions on the Catalytic Performance of Anodized Tin Oxide for Electrochemical Carbon Dioxide Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:121. [PMID: 39852736 PMCID: PMC11767452 DOI: 10.3390/nano15020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
The electrochemical reduction of CO2 (CO2RR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO2 emissions and harness renewable energy sources. Among CO2RR products, formic acid/formate (HCOOH/HCOO-) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CO2RR performance using nanostructured SnOx catalysts. A simple, quick, scalable, and cost-effective synthesis strategy was employed to fabricate SnOx catalysts with controlled oxidation states while maintaining consistent morphology and particle size. The catalysts were characterized using SEM, TEM, XRD, Raman, and XPS to correlate structure and surface properties with catalytic performance. Electrochemical measurements revealed that SnOx catalysts annealed in air at 525 °C exhibited the highest formate selectivity and current density, attributed to the optimized oxidation state and the presence of oxygen vacancies. Flow cell tests further demonstrated enhanced performance under practical conditions, achieving stable formate production with high faradaic efficiency over prolonged operation. These findings highlight the critical role of tin oxidation states and surface defects in tuning CO2RR performance, offering valuable insights for the design of efficient catalysts for CO2 electroreduction to formate.
Collapse
Affiliation(s)
- Nicolò B. D. Monti
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Juqin Zeng
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Micaela Castellino
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Samuele Porro
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Mitra Bagheri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Candido F. Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - Katarzyna Bejtka
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
2
|
Guo Z, Wang T, Xu J, Cao A, Li H. Surface coverage and reconstruction analyses bridge the correlation between structure and activity for electrocatalysis. Chem Commun (Camb) 2024. [PMID: 39555896 DOI: 10.1039/d4cc03875d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Electrocatalysis is key to realizing a sustainable future for our society. However, the complex interface between electrocatalysts and electrolytes presents an ongoing challenge in electrocatalysis, hindering the accurate identification of effective/authentic structure-activity relationships and determination of favourable reaction mechanisms. Surface coverage and reconstruction analyses of electrocatalysts are important to address each conjecture and/or conflicting viewpoint on surface-active phases and their corresponding electrocatalytic origin, i.e., so-called structure-activity relationships. In this review, we emphasize the importance of surface states in electrocatalysis experimentally and theoretically, providing guidelines for research practices in discovering promising electrocatalysts. Then, we summarize some recent progress of how surface states determine the adsorption strengths and reaction mechanisms of occurring electrocatalytic reactions, exemplified in the electrochemical oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, CO2 reduction reaction, CO2 and N2 co-reductions, and hydrogen evolution reaction. Finally, the review proposes deep insights into the in situ study of surface states, their efficient building and the application of surface Pourbaix diagrams. This review will accelerate the development of electrocatalysts and electrocatalysis theory by arousing broad consensus on the significance of surface states.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Tianyi Wang
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ang Cao
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
- Inner Mongolia Daqingshan Laboratory, Hohhot 017000, China
| | - Hao Li
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
3
|
Wang J, Guo J, Zhou Q, Hu S, Zhang X. Improving the Performance of Pd for Formic Acid Dehydrogenation by Introducing Barium Titanate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18713-18721. [PMID: 38568896 DOI: 10.1021/acsami.3c17345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Formic acid, a safe and widely available organic compound, produces hydrogen under mild conditions, with the existence of Pd-based catalysts. Efficiently generating hydrogen via formic acid decomposition (FAD) is restricted by the cleavage of the C-H bond in adsorbed HCOO* and strong adsorption of hydrogen on the Pd surface. Herein, tetragonal-phase barium titanate (TBT) was in situ grown on reduced graphene oxide (rGO) to support Pd (Pd/TBT/rGO) for FAD. The internal electric field exists around TBT owing to its spontaneous polarization capacity. The physical characterizations illustrate that the introduction of barium titanate affects the catalytic performance of the catalyst by decreasing the particle size of Pd nanoparticles (NPs) and forming electron-rich Pd. The as-synthesized Pd/TBT/rGO exhibited excellent catalytic activity and hydrogen selectivity for FAD with a high initial turnover frequency up to 3019.72 h-1 at 333 K. The reason for this enhancement is not only the small-size Pd NPs but also the internal electric field from TBT, which promotes the desorption of adsorbed hydrogen on the Pd surface. Additionally, the electron-rich Pd is favorable to the cleavage of the C-H bond in HCOO*. This work will improve the understanding of the characterization of barium titanate and provide a new design strategy for the FAD catalyst.
Collapse
Affiliation(s)
- Junyu Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangnan Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qinggang Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Du R, Wu Q, Zhang S, Wang P, Li Z, Qiu Y, Yan K, Waterhouse GIN, Wang P, Li J, Zhao Y, Zhao WW, Wang X, Chen G. CuC(O) Interfaces Deliver Remarkable Selectivity and Stability for CO 2 Reduction to C 2+ Products at Industrial Current Density of 500 mA cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301289. [PMID: 36974590 DOI: 10.1002/smll.202301289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The electrocatalytic CO2 reduction reaction (CO2 RR) is an attractive technology for CO2 valorization and high-density electrical energy storage. Achieving a high selectivity to C2+ products, especially ethylene, during CO2 RR at high current densities (>500 mA cm-2 ) is a prized goal of current research, though remains technically very challenging. Herein, it is demonstrated that the surface and interfacial structures of Cu catalysts, and the solid-gas-liquid interfaces on gas-diffusion electrode (GDE) in CO2 reduction flow cells can be modulated to allow efficient CO2 RR to C2+ products. This approach uses the in situ electrochemical reduction of a CuO nanosheet/graphene oxide dots (CuOC(O)) hybrid. Owing to abundant CuOC interfaces in the CuOC(O) hybrid, the CuO nanosheets are topologically and selectively transformed into metallic Cu nanosheets exposing Cu(100) facets, Cu(110) facets, Cu[n(100) × (110)] step sites, and Cu+ /Cu0 interfaces during the electroreduction step, the faradaic efficiencie (FE) to C2+ hydrocarbons was reached as high as 77.4% (FEethylene ≈ 60%) at 500 mA cm-2 . In situ infrared spectroscopy and DFT simulations demonstrate that abundant Cu+ species and Cu0 /Cu+ interfaces in the reduced CuOC(O) catalyst improve the adsorption and surface coverage of *CO on the Cu catalyst, thus facilitating CC coupling reactions.
Collapse
Affiliation(s)
- Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Qiqi Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Shiyi Zhang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhengjian Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland 1142, Auckland, 510640, New Zealand
| | - Pei Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430074, P. R. China
| | - Jia Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Wei-Wei Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Xue Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
5
|
Kou X, Zhang Y, Niu D, Han X, Ma L, Xu J. Polyethylene oxide-engineered graphene with rich mesopores anchoring Bi2O3 nanoparticles for boosting CO2 electroreduction to formate. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Sassone D, Zeng J, Fontana M, Farkhondehfal MA, Pirri CF, Bocchini S. Highly Dispersed Few-Nanometer Chlorine-Doped SnO 2 Catalyst Embedded in a Polyaniline Matrix for Stable HCOO - Production in a Flow Cell. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42144-42152. [PMID: 36084313 PMCID: PMC9501790 DOI: 10.1021/acsami.2c12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
With the spread of alternative energy plants, electrolysis processes are becoming the protagonists of the future industrial generation. The technology readiness level for the electrochemical reduction of carbon dioxide is still low and is largely based on precious metal resources. In the present work, tin ions are anchored on a polyaniline matrix, via a sonochemical synthesis, forming a few atomic layers of chlorine-doped SnO2 with a total loading of tin atom load of only 7 wt %. This catalyst is able to produce formate (HCOO-) with great selectivity, exceeding 72% of Faradaic efficiency in the first hour of testing in 1 M KHCO3 electrolyte, with a current density of more than 50 mA cm-2 in a 2 M KHCO3 electrolyte flow cell setup. Catalyst stability tests show a stable production of HCOO- during 6 h of measurement, accumulating an overall TONHCOO- of more than 10,000 after 16 h of continuous formate production. This strategy is competitive in drastically reducing the amount of metal required for the overall catalysis.
Collapse
Affiliation(s)
- Daniele Sassone
- Center
for Sustainable Future Technologies (CSFT)@Polito, Istituto Italiano di Tecnologia, Via Livono 60, 10144 Torino, Italy
- Department
of Applied Science and Technology-DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Juqin Zeng
- Center
for Sustainable Future Technologies (CSFT)@Polito, Istituto Italiano di Tecnologia, Via Livono 60, 10144 Torino, Italy
| | - Marco Fontana
- Department
of Applied Science and Technology-DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - M. Amin Farkhondehfal
- Center
for Sustainable Future Technologies (CSFT)@Polito, Istituto Italiano di Tecnologia, Via Livono 60, 10144 Torino, Italy
| | - Candido F. Pirri
- Center
for Sustainable Future Technologies (CSFT)@Polito, Istituto Italiano di Tecnologia, Via Livono 60, 10144 Torino, Italy
- Department
of Applied Science and Technology-DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Sergio Bocchini
- Center
for Sustainable Future Technologies (CSFT)@Polito, Istituto Italiano di Tecnologia, Via Livono 60, 10144 Torino, Italy
| |
Collapse
|
8
|
Abdinejad M, Irtem E, Farzi A, Sassenburg M, Subramanian S, Iglesias van Montfort HP, Ripepi D, Li M, Middelkoop J, Seifitokaldani A, Burdyny T. CO 2 Electrolysis via Surface-Engineering Electrografted Pyridines on Silver Catalysts. ACS Catal 2022; 12:7862-7876. [PMID: 35799769 PMCID: PMC9251727 DOI: 10.1021/acscatal.2c01654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Indexed: 12/21/2022]
Abstract
![]()
The electrochemical
reduction of carbon dioxide (CO2) to value-added materials
has received considerable attention. Both
bulk transition-metal catalysts and molecular catalysts affixed to
conductive noncatalytic solid supports represent a promising approach
toward the electroreduction of CO2. Here, we report a combined
silver (Ag) and pyridine catalyst through a one-pot and irreversible
electrografting process, which demonstrates the enhanced CO2 conversion versus individual counterparts. We find that by tailoring
the pyridine carbon chain length, a 200 mV shift in the onset potential
is obtainable compared to the bare silver electrode. A 10-fold activity
enhancement at −0.7 V vs reversible hydrogen electrode (RHE)
is then observed with demonstratable higher partial current densities
for CO, indicating that a cocatalytic effect is attainable through
the integration of the two different catalytic structures. We extended
the performance to a flow cell operating at 150 mA/cm2,
demonstrating the approach’s potential for substantial adaptation
with various transition metals as supports and electrografted molecular
cocatalysts.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Erdem Irtem
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Amirhossein Farzi
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Mark Sassenburg
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Siddhartha Subramanian
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | | | - Davide Ripepi
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Mengran Li
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Joost Middelkoop
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Thomas Burdyny
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|