• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5090940)   Today's Articles (35)
For: Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. ChemSusChem 2021;14:2655-2681. [PMID: 33963668 DOI: 10.1002/cssc.202100602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
Number Cited by Other Article(s)
1
Correia JTM, Nori V, Jørgensen MSB, Nikol AT, Nielsen M. Ru-Nitrosyl Complex Salts as Efficient Catalysts for the Reversible CO2 Hydrogenation/FA Dehydrogenation in Ionic Liquids. JACS AU 2025;5:2114-2122. [PMID: 40443896 PMCID: PMC12117396 DOI: 10.1021/jacsau.5c00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 06/02/2025]
2
Monti ND, Chen T, Huang L, Wang J, Fontana M, Pirri CF, Ju W, Zeng J. Unveiling the Origin of pH-Dependent Catalytic Performance of Bi2O3 Nanostructure for Electrochemical CO2 Reduction. J Phys Chem Lett 2025;16:3761-3768. [PMID: 40193254 PMCID: PMC12010420 DOI: 10.1021/acs.jpclett.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
3
Aufricht P, Nori V, Rabell B, Piccirilli L, Koranchalil S, W Larsen R, Nielsen MT, Nielsen M. Formic acid dehydrogenation catalysed by a novel amino-di(N-heterocyclic carbene) based Ru-CNC pincer complex. Chem Commun (Camb) 2025;61:3986-3989. [PMID: 39820207 DOI: 10.1039/d4cc05164e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
4
Nikol AT, Rabell B, Jørgensen MSB, Larsen RW, Nielsen M. Formic acid dehydrogenation using Ruthenium-POP pincer complexes in ionic liquids. Sci Rep 2024;14:26209. [PMID: 39482323 PMCID: PMC11527872 DOI: 10.1038/s41598-024-76782-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]  Open
5
Zhang Y, Yang X, Liu S, Liu J, Pang S. Catalytic dehydrogenative coupling and reversal of methanol-amines: advances and prospects. Chem Commun (Camb) 2024;60:4121-4139. [PMID: 38533605 DOI: 10.1039/d4cc00653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
6
Guo J, Li M, Yin C, Zhong D, Zhang Y, Li X, Wang Y, Yuan J, Xie H, Qi T. Formic Acid Dehydrogenation through Ligand Design Strategy of Amidation in Half-Sandwich Ir Complexes. Inorg Chem 2023;62:18982-18989. [PMID: 37939313 DOI: 10.1021/acs.inorgchem.3c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
7
Pandey B, Krause JA, Guan H. On the Demise of PPP-Ligated Iron Catalysts in the Formic Acid Dehydrogenation Reaction. Inorg Chem 2023;62:18714-18723. [PMID: 37907063 DOI: 10.1021/acs.inorgchem.3c03125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
8
Ma HZ, Canty AJ, O'Hair RAJ. Liberation of carbon monoxide from formic acid mediated by molybdenum oxyanions. Dalton Trans 2023;52:15734-15746. [PMID: 37843527 DOI: 10.1039/d3dt01983g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
9
Guo J, Li M, Yin C, Li X, Wang Y, Yuan J, Qi T. A ligand design strategy to enhance catalyst stability for efficient formic acid dehydrogenation. Dalton Trans 2023;52:4856-4861. [PMID: 36939828 DOI: 10.1039/d2dt04079d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
10
Piccirilli L, Rabell B, Padilla R, Riisager A, Das S, Nielsen M. Versatile CO2 Hydrogenation-Dehydrogenation Catalysis with a Ru-PNP/Ionic Liquid System. J Am Chem Soc 2023;145:5655-5663. [PMID: 36867088 DOI: 10.1021/jacs.2c10399] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
11
Ma HZ, Canty AJ, O'Hair RAJ. Near thermal, selective liberation of hydrogen from formic acid catalysed by copper hydride ate complexes. Dalton Trans 2023;52:1574-1581. [PMID: 36656079 DOI: 10.1039/d2dt03764e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
12
Maji B, Kumar A, Bhattacherya A, Bera JK, Choudhury J. Cyclic Amide-Anchored NHC-Based Cp*Ir Catalysts for Bidirectional Hydrogenation–Dehydrogenation with CO2/HCO2H Couple. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
13
A review of formic acid decomposition routes on transition metals for its potential use as a liquid H2 carrier. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
14
Lentz N, Albrecht M. A Low-Coordinate Iridium Complex with a Donor-Flexible O,N-Ligand for Highly Efficient Formic Acid Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
15
Vatsa A, Mishra A, Padhi SK. Monitoring of catalytic dehydrogenation of formic acid by a ruthenium (II) complex through manometry. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
16
Shen C, Dong K, Wei Z, Tian X. In Silico Investigation of Ligand-Regulated Palladium-Catalyzed Formic Acid Dehydrative Decomposition under Acidic Conditions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
17
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022;122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
18
Guo J, Yin C, Li M, Zhong D, Zhang Y, Li X, Wang Y, Yao H, Qi T. Picolinamide‐Based Iridium Catalysts for Aqueous Formic Acid Dehydrogenation: Increase in Electron Density of Amide N through Substituents. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
19
Chaparro-Garnica JA, Navlani-García M, Salinas-Torres D, Morallón E, Cazorla-Amorós D. H2 Production from Formic Acid Using Highly Stable Carbon-Supported Pd-Based Catalysts Derived from Soft-Biomass Residues: Effect of Heat Treatment and Functionalization of the Carbon Support. MATERIALS 2021;14:ma14216506. [PMID: 34772045 PMCID: PMC8585402 DOI: 10.3390/ma14216506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
20
Luque-Gómez A, García-Abellán S, Munarriz J, Polo V, Passarelli V, Iglesias M. Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands. Inorg Chem 2021;60:15497-15508. [PMID: 34558914 PMCID: PMC8527458 DOI: 10.1021/acs.inorgchem.1c02132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA