1
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Rase D, Manna N, Kushwaha R, Jain C, Singh HD, Shekhar P, Singh P, Singh YK, Vaidhyanathan R. Design enhancement in hydroxide ion conductivity of viologen-bakelite organic frameworks for a flexible rechargeable zinc-air battery. Chem Sci 2024; 15:6949-6957. [PMID: 38725505 PMCID: PMC11077532 DOI: 10.1039/d4sc00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/24/2024] [Indexed: 05/12/2024] Open
Abstract
Quasi-solid-state rechargeable zinc-air batteries (ZABs) are suitable for the generation of portable clean energy due to their high energy and power density, safety, and cost-effectiveness. Compared to the typical alkaline aqueous electrolyte in a ZAB, polymer or gel-based electrolytes can suppress the dissolution of zinc, preventing the precipitation of undesirable irreversible zinc compounds. Their low electronic conductivity minimizes zinc dendrite formation. However, gel electrolytes suffer from capacity fade due to the loss of the volatile solvent, failing to deliver high-energy and high-power ZABs. Consequently, developing polymers with high hydroxide ion conductivity and chemical durability is paramount. We report cationic C-C bonded robust polymers with stoichiometrically controlled mobile hydroxide ions as solid-state hydroxide ion transporters. To boot, we increased the viologen-hydroxide-ion concentration through "by-design" monomers. The polymers constructed with these designer monomers exhibit a commensurate increase in their ionic conductivity. The polymer prepared with 4 OH- ion-containing monomer was superior to the one with 3 OH-. The conductivity increases from 7.30 × 10-4 S cm-1 (30 °C) to 2.96 × 10-3 S cm-1 (30 °C) at 95% RH for IISERP-POF12_OH (2_OH) and IISERP-POF13_OH (3_OH), respectively. A rechargeable ZAB (RZAB) constructed using 3_OH@PVA (polyvinyl alcohol) as the electrolyte membrane and Pt/C + RuO2 catalyst delivers a power density of 158 mW cm-2. In comparison, RZABs with a PVA interlayer provided only 72 mW cm-2. Notably, the device suffered an initial charge-discharge voltage gap of merely 0.55 V at 10 mA cm-2, which increased by only 2 mV after 50 hours of running. The battery operated at 10 mA cm-2 and worked steadily for 67 hours. We accomplished a flexible and rechargeable zinc-air battery (F-RZAB) exhibiting a maximum power density of 79 mW cm-2. This demonstration of a cationic viologen-bakelite polymer-based flexible secondary ZAB with versatile stochiometric hydroxide-ion tunability marks an important achievement in hydroxide-ion conducting solid-state electrolyte development.
Collapse
Affiliation(s)
- Deepak Rase
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Narugopal Manna
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Rinku Kushwaha
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Chitvan Jain
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Himan Dev Singh
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Pragalbh Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Piyush Singh
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Yashraj Kumar Singh
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Ramanathan Vaidhyanathan
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- The Centre of Excellence for Carbon Capture and Removal, Svante Incorporation 8800 Glenlyon Pkwy Burnaby British Columbia V5J 5K3 Canada
| |
Collapse
|
3
|
Favero S, Stephens IEL, Titirci MM. Anion Exchange Ionomers: Design Considerations and Recent Advances - An Electrochemical Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308238. [PMID: 37891006 DOI: 10.1002/adma.202308238] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Alkaline-based electrochemical devices, such as anion exchange membrane (AEM) fuel cells and electrolyzers, are receiving increasing attention. However, while the catalysts and membrane are methodically studied, the ionomer is largely overlooked. In fact, most of the studies in alkaline electrolytes are conducted using the commercial proton exchange ionomer Nafion. The ionomer provides ionic conductivity; it is also essential for gas transport and water management, as well as for controlling the mechanical stability and the morphology of the catalyst layer. Moreover, the ionomer has distinct requirements that differ from those of anion-exchange membranes, such as a high gas permeability, and that depend on the specific electrode, such as water management. As a result, it is necessary to tailor the ionomer structure to the specific application in isolation and as part of the catalyst layer. In this review, an overview of the current state of the art for anion exchange ionomers is provided, summarizing their specific requirements and limitations in the context of AEM electrolyzers and fuel cells.
Collapse
Affiliation(s)
- Silvia Favero
- Department of Chemical Engineering, Imperial College London, England, SW7 2BU, UK
| | - Ifan E L Stephens
- Department of Materials, Imperial College London, England, SW7 2BU, UK
| | | |
Collapse
|
4
|
Cao D, Sun X, Gao H, Pan L, Li N, Li Y. Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains. Polymers (Basel) 2023; 15:polym15051073. [PMID: 36904314 PMCID: PMC10007585 DOI: 10.3390/polym15051073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
To investigate the effect of perfluorinated substituent on the properties of anion exchange membranes (AEMs), cross-linked polynorbornene-based AEMs with perfluorinated branch chains were prepared via ring opening metathesis polymerization, subsequent crosslinking reaction, and quaternization. The crosslinking structure enables the resultant AEMs (CFnB) to exhibit a low swelling ratio, high toughness, and high water uptake, simultaneously. In addition, benefiting from the ion gathering and side chain microphase separation caused by their flexible backbone and perfluorinated branch chain, these AEMs had high hydroxide conductivity up to 106.9 mS cm-1 at 80 °C even at low ion content (IEC < 1.6 meq g-1). This work provides a new approach to achieve improved ion conductivity at low ion content by introducing the perfluorinated branch chains and puts forward a referable way to prepare AEMs with high performance.
Collapse
Affiliation(s)
- Dafu Cao
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaowei Sun
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Huan Gao
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Pan
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Correspondence:
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yuesheng Li
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
5
|
Cao D, Nie F, Liu M, Sun X, Wang B, Wang F, Li N, Wang B, Ma Z, Pan L, Li Y. Crosslinked anion exchange membranes prepared from highly reactive polyethylene and polypropylene intermediates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Han J, Song W, Cheng X, Cheng Q, Zhang Y, Liu C, Zhou X, Ren Z, Hu M, Ning T, Xiao L, Zhuang L. Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect. CHEMSUSCHEM 2021; 14:5021-5031. [PMID: 34498428 DOI: 10.1002/cssc.202101446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The rise of heterocycle cations, a new class of stable cations, has fueled faster growth of research interest in heterocycle cation-attached anion exchange membranes (AEMs). However, once cations are grafted onto backbones, the effect of backbones on properties of AEMs must also be taken into account. In order to comprehensively study the influence of cations effect and backbones effect on AEMs performance, a series of AEMs were prepared by grafting spacer cations, heterocycles cations, and aromatic cations onto brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) or poly(vinylbenzyl chloride) (PVB) backbones, respectively. Spacer cation [trimethylamine (TMA), N,N-dimethylethylamine (DMEA)]-attached AEMs showed general ion transportation and stability behaviors, but exhibited high cationic reaction efficiency. Heterocycle cation [1-methylpyrrolidine (MPY), 1-methylpiperidine (MPrD)]-attached AEMs showed excellent chemical stability, but their ion conduction properties were unimpressive. Aromatic cation [1-methylimidazole (MeIm), N,N-dimethylaniline (DMAni)]-attached AEMs exhibited superior ionic conductivity, while their poor cations stabilities hindered the application of the membranes. Besides, it was found that PVB-based AEMs had excellent backbone stability, but BPPO-based AEMs exhibited higher OH- conductivity and cation stability than those of the same cations grafted PVB-based AEMs due to their higher water uptake (WU). For example, the ionic conductivities (ICs) of BPPO-TMA and PVB-TMA at 80 °C were 53.1 and 38.3 mS cm-1 , and their WU was 152.3 and 95.1 %, respectively. After the stability test, the IC losses of BPPO-TMA and PVB-TMA were 21.4 and 32.2 %, respectively. The result demonstrated that the conductivity and stability properties of the AEMs could be enhanced by increasing the WU of the membranes. These findings allowed the matching of cations to the appropriate backbones and reasonable modification of the AEM structure. In addition, these results helped to fundamentally understand the influence of cation effect and backbone effect on AEM performance.
Collapse
Affiliation(s)
- Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Wenfeng Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xueqi Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Qiang Cheng
- Early Warning Simulation Training Center, People's Liberation Army Air Force Early Warning Academy, Wuhan, 430019, P. R. China
| | - Yangyang Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Chifeng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xiaorong Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Meixue Hu
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Tianshu Ning
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|