1
|
Luo X, Pei X, Zhang X, Du H, Ju L, Li S, Chen L, Zhang J. Advancing hydrothermal carbonization: Assessing hydrochar's role and challenges in carbon sequestration. ENVIRONMENTAL RESEARCH 2025; 270:121023. [PMID: 39914712 DOI: 10.1016/j.envres.2025.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
The increasing urgency to reduce atmospheric CO2 emissions has driven research into sustainable carbon sequestration technologies, with hydrochar (HC) emerging as a promising material. HC is derived from hydrothermal carbonization (HTC), a thermochemical process that converts biomass into a carbon-rich solid at moderate temperatures and self-generated pressure in an aqueous environment. Due to its unique reaction pathways, HC differs significantly from biochar (BC) derived from pyrolysis in terms of application, performance, and structural characteristics. Despite HC's potential for long-term carbon storage, critical gaps remain in understanding its sequestration mechanisms, influencing factors, and optimization strategies-hindering its effective application. This review critically evaluates HC's carbon sequestration capacity, focusing on overlooked complexities that influence its performance. Key parameters, including feedstock composition, reaction temperature, pH, and residence time, are systematically examined to elucidate their impact on HC's structural integrity and carbon stability. Special attention is given to the role of lignin in enhancing stability and thermal resilience, as well as the concept of carbon-ash recalcitrance, where mineral embedding enhances carbon stability. To assess HC's long-term sequestration effectiveness, this study analyzes key indicators such as thermal stability, chemical resilience, aromaticity, and dissolved organic carbon (DOC) leaching.Besides, this review explores innovative strategies for improving HC's sequestration performance, including HTC liquid recycling, chemical modification, and salinity control. By integrating expert-driven insights and identifying research gaps, this synthesis advances theoretical understanding while outlining future directions for optimizing HC as a sustainable carbon sink. Ultimately, this work establishes HC as a critical material in global carbon management efforts and climate change mitigation.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology, 610059, China; Tianfu Yongxing Laboratory, Chengdu, 610200, China
| | - Xiangjun Pei
- State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology, 610059, China; Tianfu Yongxing Laboratory, Chengdu, 610200, China
| | - Xiaochao Zhang
- State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology, 610059, China; Tianfu Yongxing Laboratory, Chengdu, 610200, China.
| | - Haiying Du
- Key Laboratory of Coordinated Control and Joint Remediation of Water and Soil Pollution for National Environmental Protection, College of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Linxue Ju
- Geological Institute of China Chemical Geology and Mine Bureau, Beijing, 100101, China
| | - Shengwei Li
- Chengdu Center of China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu, 610218, China
| | - Lei Chen
- Tianjin Normal University, Tianjin, 300387, China
| | - Junji Zhang
- Chengdu Center of China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu, 610218, China
| |
Collapse
|
2
|
Anne Cazier E, Brethauer S, Claude Bühler P, Hans-Peter Studer M. Steam explosion pretreatment of separated dairy cattle manure: Mass balances and effect on biomethane potential. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:180-189. [PMID: 39667111 DOI: 10.1016/j.wasman.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Manure is a renewable feedstock, whose theoretical potential for biogas production is scarcely deployed due to modest methane yields that prevent economic feasible operation of anaerobic digestion plants. Steam explosion pretreatment has the potential to improve the digestibility of manure, however it is energy intensive, and the optimal conditions depend on the feedstock. In this work, the solid and the liquid fraction of separated dairy cattle manure were pretreated between 130 and 210 °C for 5 to 40 min by steam explosion to individually determine the optimal conditions for each fraction. Additionally, mass balances for volatile solids (VS), cellulose, hemicellulose and proteins were performed to better understand the effects of the pretreatment. For the manure solids, a pretreatment at 130 °C for 20 min was most effective, the biomethane potential (BMP) improved by 40 %. In contrast, the BMP of the liquid fraction could not be improved at any pretreatment condition. The mass balances showed that at more severe conditions up to 18 % of the VS were lost by decomposition and/or evaporation, with the proteins being the most thermolabile fraction. Based on the observation, that a pretreatment of the liquid phase can be omitted, a heat integrated plant concept is suggested where the necessary heat input is only as large as in conventional anaerobic digestion. Taken together, this work underlined the benefits of steam explosion pretreatment of manure and identified the prevention of VS loss as a promising avenue for further improving the process.
Collapse
Affiliation(s)
- Elisabeth Anne Cazier
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Länggasse 85 3052, Zollikofen, Switzerland
| | - Simone Brethauer
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Länggasse 85 3052, Zollikofen, Switzerland
| | - Patrice Claude Bühler
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Länggasse 85 3052, Zollikofen, Switzerland
| | - Michael Hans-Peter Studer
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, Länggasse 85 3052, Zollikofen, Switzerland.
| |
Collapse
|
3
|
Carranza Muñoz A, Olsson J, Malovanyy A, Baresel C, Machamada-Devaiah N, Schnürer A. Impact of thermal hydrolysis on VFA-based carbon source production from fermentation of sludge and digestate for denitrification: experimentation and upscaling implications. WATER RESEARCH 2024; 266:122426. [PMID: 39276471 DOI: 10.1016/j.watres.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Stricter nutrient discharge limits at wastewater treatment plants (WWTPs) are increasing the demand for external carbon sources for denitrification, especially at cold temperatures. Production of carbon sources at WWTP by fermentation of sewage sludge often results in low yields of soluble carbon and volatile fatty acids (VFA) and high biogas losses, limiting its feasibility for full-scale application. This study investigated the overall impact of thermal hydrolysis pre-treatment (THP) on the production of VFA for denitrification through the fermentation of municipal sludge and digestate. Fermentation products and yields, denitrification efficiency and potential impacts on methane yield in the downstream process after carbon source separation were evaluated. Fermentation of THP substrates resulted in 37-70 % higher soluble chemical oxygen demand (sCOD) concentrations than fermentation of untreated substrates but did not significantly affect VFA yield after fermentation. Nevertheless, THP had a positive impact on the denitrification rates and on the methane yields of the residual solid fraction in all experiments. Among the different carbon sources tested, the one produced from the fermentation of THP-digestate showed an overall better potential as a carbon source than other substrates (e.g. sludge). It obtained a relatively high carbon solubilisation degree (39 %) and higher concentrations of sCOD (19 g sCOD/L) and VFA (9.8 g VFACOD/L), which resulted in a higher denitrification rate (8.77 mg NOx-N/g VSS∙h). After the separation of the carbon source, the solid phase from this sample produced a methane yield of 101 mL CH4/g VS. Furthermore, fermentation of a 50:50 mixture of THP-substrate and raw sludge produced also resulted in a high VFA yield (283 g VFACOD/kg VSin) and denitrification rate of 8.74 mg NOx-N/g VSS∙h, indicating a potential for reduced treatment volumes. Calculations based on a full-scale WWTP (Käppala, Stockholm) demonstrated that the carbon sources produced could replace fossil-based methanol and meet the nitrogen effluent limit (6 mg/L) despite their ammonium content. Fermentation of 50-63 % of the available sludge at Käppala WWTP in 2028 could produce enough carbon source to replace methanol, with only an 8-20 % reduction in methane production, depending on the production process. Additionally, digestate production would be sufficient to generate 81 % of the required carbon source while also increasing methane production by 5 % if a portion of the solid residues were recirculated to the digester.
Collapse
Affiliation(s)
- Andrea Carranza Muñoz
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden; Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden.
| | - Jesper Olsson
- The Käppala Association, Södra Kungsvägen 315, 181 66 Lidingö, Sweden
| | - Andriy Malovanyy
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Christian Baresel
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Nethra Machamada-Devaiah
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden
| |
Collapse
|
4
|
Tozihi M, Bahrami H, Garmabdashti M. Thermal decomposition and atmospheric pressure chemical ionization of alanine using ion mobility spectrometry and computational study. Heliyon 2024; 10:e39942. [PMID: 39553543 PMCID: PMC11566689 DOI: 10.1016/j.heliyon.2024.e39942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This study investigates the impact of thermal decomposition on the ion mobility spectrum of L-alanine using ion mobility spectrometry (IMS) and computational methods. By employing a post-injection delay system, we examined the evolution of ion peaks corresponding to thermal decomposition products and their interaction with protonated alanine. Experimental results revealed that the observed ion mobility spectra predominantly feature protonated isomers and adduct ions. Computational analysis using Density Functional Theory (DFT) predicted the thermodynamically favored structures and stabilities of these products. Findings indicate that protonation at the nitrogen site in alanine is more stable than at the oxygen site, and observed peaks correspond to protonated isomers and adducts formed with ammonium ions. Further investigations showed that thermal decomposition of alanine generates ammonia, contributing to the formation of new adduct ions. This research provides new insights into the behavior of amino acids under thermal conditions with implications for analytical chemistry and biochemistry.
Collapse
Affiliation(s)
- Manijeh Tozihi
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran
| | - Hamed Bahrami
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran
| | | |
Collapse
|
5
|
Gil-Ramírez A, Rebollo-Hernanz M, Cañas S, Monedero Cobeta I, Rodríguez-Rodríguez P, Gila-Díaz A, Benítez V, Arribas SM, Aguilera Y, Martín-Cabrejas MA. Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy. Foods 2024; 13:3006. [PMID: 39335934 PMCID: PMC11431805 DOI: 10.3390/foods13183006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The coffee pulp, a significant by-product of coffee processing, is often discarded but has potential for recycling and high-value uses. This study aimed to investigate the chemical composition of two coffee pulp ingredients, a flour (CPF) and an aqueous extract (CPE), and conducted acute and sub-chronic toxicity assays to determine their safety. The proximate composition revealed the high fiber content of both ingredients; the CPF mainly contained insoluble fiber, while CPE consisted exclusively of soluble pectic polysaccharides. The CPF had higher concentrations of amino acids and a better balance of essential/non-essential amino acids, whereas the CPE exhibited higher concentrations of free amino acids, ensuring higher bioavailability. Both ingredients showed elevated mineral content, while heavy-metal concentrations remained within acceptable limits. This study established the bioactive potential of the CPF and the CPE, demonstrating the high content of caffeine and gallic, protocatechuic, and 4-caffeoylquinic acids. The toxicity studies revealed that the CPF and the CPE exhibited safety when orally administered to mice. Administered doses were non-toxic, as they did not induce lethality or adverse effects in the mice or produce significant histopathological or biochemical adverse changes. This study represents a first step in valorizing the CPF and the CPE as safe novel food ingredients with health benefits for functional and nutritional foods.
Collapse
Affiliation(s)
- Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - Ignacio Monedero Cobeta
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo, 2, 28029 Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo, 2, 28029 Madrid, Spain
| | - Andrea Gila-Díaz
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo, 2, 28029 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - Silvia M. Arribas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo, 2, 28029 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain; (A.G.-R.); (M.R.-H.); (S.C.); (V.B.); (Y.A.)
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (I.M.C.); (P.R.-R.); (A.G.-D.); (S.M.A.)
| |
Collapse
|
6
|
Morsali MA, Golmohammadi B, Shekaari H. Choline chloride and amino acid solutions taste and hydration behavior with experimental thermodynamic properties and COSMO-PC-SAFT calculation. Sci Rep 2024; 14:20372. [PMID: 39223153 PMCID: PMC11368939 DOI: 10.1038/s41598-024-70275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Aqueous amino acid solutions have been introduced as dietary supplements for both animals and humans. This study investigates the physicochemical properties of the solutions containing amino acids (L-glycine, D,L-alanine, L-proline), choline chloride, and water at temperature range of 288.15 to 318.15 K. The results show that increasing concentrations of amino acids and choline chloride lead to higher solution densities. Analysis of apparent molar volume (Vφ) and apparent molar isentropic compressibility (κφ) reveals that Vφ values increase with choline chloride concentration and temperature, indicating enhanced solute-solvent interactions, while κφ values decrease, suggesting increased solution compression. Thermodynamic analysis using the Redlich-Mayer model and COSMO-based modeling provides insights into molecular interactions. However, COSMO-based parameters show high average relative deviation percentage (ARD %) values, indicating poor predictive performance for the density of these systems. In contrast, the ePC-SAFT equation of state effectively predicts the densities, particularly for L-proline-based solutions, which show very low ARD % values, indicating high accuracy. The ePC-SAFT model also performs reasonably well for L-glycine solutions but shows poorer results for D,L-alanine-based solutions. The study also examines the sweetness and saltiness criteria (ASV and ASIC) of these solutions. The ASV values, which serve as a sweetness criterion, are higher than the ideal range of 0.5 < ASV < 0.7, suggesting an overly sweet taste. The ASIC values follow a similar trend, indicating increased saltiness. To achieve an appropriate grade of sweetness and saltiness, dilution to lower concentrations of the solution is recommended. Furthermore, the use of choline chloride is found to increase salt intake and enhance the taste of salt, which can be beneficial in amino acid supplements used in animal food.
Collapse
Affiliation(s)
- Mohammad Amin Morsali
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Boulevard, Tabriz, Iran
| | - Behrang Golmohammadi
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Boulevard, Tabriz, Iran
| | - Hemayat Shekaari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Boulevard, Tabriz, Iran.
| |
Collapse
|
7
|
Hanczyc P, Alfarano SR, Bolisetty S, Zhou J, Peydayesh M, Lutz‐Bueno V, Diaz A, Goswami SR, Beerepoot MTP, Alam MM, Wang L, Solin N, Szymanska I, Mezzenga R. Photonics of Hydrothermally Treated β-Lactoglobulin Amyloids. SMALL SCIENCE 2024; 4:2400054. [PMID: 40212123 PMCID: PMC11935170 DOI: 10.1002/smsc.202400054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Indexed: 04/13/2025] Open
Abstract
Increased temperature and high pressure are applied to β-lactoglobulin fibrils in the autoclave, resulting in the acquisition of a composite material comprised of partially disassembled amyloid fibrils and carbon dots. Confirmation of the preservation of the β-sheet motif attributed to amyloids in the hydrothermally treated fibrils is obtained through wide-angle X-ray scattering and ThT assay. Z-scan analysis reveals a two-photon absorption (2PA) enhancement in the low-lying transition band (L a) of tyrosine, while quantum chemical calculations demonstrate a correlation between the yield of 2PA and the interspace distance between aromatic residues. Overall, the intrinsic optical properties of amyloid fibrils treated in a subcritical water environment are found to be linked with the π-conjugation of tyrosine units and their through-space coupling. The resulting composite material is employed as a coating for a commercial ultraviolet light-emitting diode lamp, showcasing the potential utility of sustainable biomaterials with improved optical properties for photonics applications.
Collapse
Affiliation(s)
- Piotr Hanczyc
- Faculty of PhysicsInstitute of Experimental PhysicsUniversity of WarsawPasteura 502‐093WarsawPoland
- Department of Physics, Chemistry, and Biology, Electronic and Photonic Materials, Biomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | | | - Sreenath Bolisetty
- Department of Health Sciences and TechnologyETH Zurich8092ZurichSwitzerland
| | - Jiangtao Zhou
- Department of Health Sciences and TechnologyETH Zurich8092ZurichSwitzerland
| | - Mohammad Peydayesh
- Department of Health Sciences and TechnologyETH Zurich8092ZurichSwitzerland
| | | | - Ana Diaz
- Paul Scherrer InstitutPSI5232VilligenSwitzerland
| | | | - Maarten T. P. Beerepoot
- Hylleraas Centre for Quantum Molecular SciencesDepartment of ChemistryUiT The Arctic University of NorwayN‐9037TromsøNorway
| | - Mohammad Mehboob Alam
- Hylleraas Centre for Quantum Molecular SciencesDepartment of ChemistryUiT The Arctic University of NorwayN‐9037TromsøNorway
- Department of Chemisry and Department of Materials Science and Metallurgical EngineeringIndian Institute of Technology BhilaiDurgChhattisgarh491002India
| | - Lei Wang
- Department of Physics, Chemistry, and Biology, Electronic and Photonic Materials, Biomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
- School of Chemical EngineeringGuangdong University of Petrochemical TechnologyMaomingGuangdong525000China
| | - Niclas Solin
- Department of Physics, Chemistry, and Biology, Electronic and Photonic Materials, Biomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Iwona Szymanska
- Department of Food Technology and AssessmentInstitute of Food SciencesWarsaw University of Life Sciences (WULS‐SGGW)159C Nowoursynowska St.02‐776WarsawPoland
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH Zurich8092ZurichSwitzerland
- Department of MaterialsETH Zurich8093ZurichSwitzerland
| |
Collapse
|
8
|
Alonso-Riaño P, Illera AE, Benito-Román O, Melgosa R, Bermejo-López A, Beltrán S, Sanz MT. Degradation kinetics of sugars (glucose and xylose), amino acids (proline and aspartic acid) and their binary mixtures in subcritical water: Effect of Maillard reaction. Food Chem 2024; 442:138421. [PMID: 38244443 DOI: 10.1016/j.foodchem.2024.138421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
A systematic kinetic study was conducted in subcritical water medium in the temperature range from 150 to 200 °C for pure glucose, xylose, proline and aspartic acid as well as binary mixtures of sugars + amino acids to understand the reaction kinetics and interactions among biomass components and to discern the influence of Maillard reaction (MR) on the overall reaction kinetics. The main degradation products identified for glucose and xylose were the respective dehydration products, hydroxymethyl furfural and furfural, yielding an increasing solid residue with temperature (15.9 wt% at 200 °C) with an augmented heating value. The degradation of sugars and amino acids in binary systems was faster compared to pure compounds due to MR and the production of dehydration products was delayed when considering total sugar conversion. Higher relative reactivity in MR was observed for xylose over glucose showing also higher antioxidant activity.
Collapse
Affiliation(s)
- P Alonso-Riaño
- Department of Biotechnology and Food Science, Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - A E Illera
- Department of Biotechnology and Food Science, Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - O Benito-Román
- Department of Biotechnology and Food Science, Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - R Melgosa
- Department of Biotechnology and Food Science, Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - A Bermejo-López
- Department of Chemical Engineering, Faculty of Science and Technology, University of the Vasque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain
| | - S Beltrán
- Department of Biotechnology and Food Science, Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - M T Sanz
- Department of Biotechnology and Food Science, Faculty of Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
9
|
Pansuriya R, Patel T, Kumar S, Aswal VK, Raje N, Hoskins C, Kailasa SK, Malek NI. Multifunctional Ionic Hydrogel-Based Transdermal Delivery of 5-Fluorouracil for the Breast Cancer Treatment. ACS APPLIED BIO MATERIALS 2024; 7:3110-3123. [PMID: 38620030 DOI: 10.1021/acsabm.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Transdermal drug delivery systems (TDDS) are a promising and innovative approach for breast cancer treatment, offering advantages such as noninvasiveness, potential for localized and prolonged drug delivery while minimizing systemic side effects through avoiding first-pass metabolism. Utilizing the distinctive characteristics of hydrogels, such as their biocompatibility, versatility, and higher drug loading capabilities, in the present work, we prepared ionic hydrogels through synergistic interaction between ionic liquids (ILs), choline alanine ([Cho][Ala]), and choline proline ([Cho][Pro]) with oleic acid (OA). ILs used in the study are biocompatible and enhance the solubility of 5-fluorouracil (5-FU), whereas OA is a known chemical penetration enhancer. The concentration-dependent (OA) change in morphological aggregates, that is, from cylindrical micelles to worm-like micelles to hydrogels was formed with both ILs and was characterized by SANS measurement, whereas the interactions involved were confirmed by FTIR spectroscopy. The hydrogels have excellent mechanical properties, which studied by rheology and their morphology through FE-SEM analysis. The in vitro skin permeation study revealed that both hydrogels penetrated 255 times ([Cho][Ala]) and 250 times ([Cho][Pro]) more as compared to PBS after 48 h. Those ionic hydrogels exhibited the capability to change the lipid and keratin arrangements within the skin layer, thereby enhancing the transdermal permeation of the 5-FU. Both ionic hydrogels exhibit excellent biocompatibility with normal cell lines (L-132 cells) as well as cancerous cell lines (MCF-7 cells), demonstrating over 92% cell viability after 48 h in both cell lines. In vitro, the cytotoxicity of the 5-FU-loaded hydrogels was evaluated on MCF-7 and HeLa cell lines. These results indicate that the investigated biocompatible and nontoxic ionic hydrogels enable the transdermal delivery of hydrophilic drugs, making them a viable option for effectively treating breast cancer.
Collapse
Affiliation(s)
- Raviraj Pansuriya
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat395007, Gujarat ,India
| | - Tapas Patel
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat395007, Gujarat ,India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Naina Raje
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Clare Hoskins
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Suresh Kumar Kailasa
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat395007, Gujarat ,India
| | - Naved I Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat395007, Gujarat ,India
| |
Collapse
|
10
|
Al-Kwradi M, Ali L, Altarawneh M. Predicting the Decomposition Mechanism of the Serine α-Amino Acid in the Gas Phase and Condensed Media. ACS OMEGA 2024; 9:8574-8584. [PMID: 38405454 PMCID: PMC10882666 DOI: 10.1021/acsomega.3c10496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
Comprehending the nitrogen combustion chemistry during the thermal treatment of biomass demands acquiring a detailed mechanism for reaction pathways that dictate the degradation of amino acids. Serine (Ser) is an important α-amino acid that invariably exists in various categories of biomass, most notably algae. Based on density functional theory (DFT) coupled with kinetic modeling, this study presents a mechanistic overview of reactions that govern the fragmentation of the Ser compound in the gas phase as well as in the crystalline form. Thermokinetic parameters are computed for a large set of reactions and involved species. The initial decomposition of Ser is solely controlled by a dehydration channel that leads to the formation of a 2-aminoacrylic acid molecule. Decarboxylation and deamination routes are likely to be of negligible importance. The falloff window of the dehydration channel extends until the atmospheric pressure. Bimolecular reactions between two Ser compounds simulate the widely discussed cross-linking reactions that prevail in the condensed medium. It is demonstrated that the formation of the key experimentally observed products (NH3, CO2, and CO) may originate from direct bond fissions in the melted phase of Ser prior to evaporation. A constructed kinetic model (with 24 reactions) accounts for the primary steps in the degradation of the Ser molecule in the gas phase. These steps include dehydration, decarboxylation, deamination, and others. The kinetic model presents an onset decomposition temperature of 700 K with the complete conversion attained at ∼1090 K. Likewise, the model portrays the temperature-dependent increasing yields of CO2 and NH3. The results presented in this work offer a detailed analysis of the intricate chemical processes involved in nitrogen transformations, specifically in relation to amino acids. Amino acids play a crucial role as the primary nitrogen carriers in biomass, such as microalgae and protein-rich biomass.
Collapse
Affiliation(s)
- Mubarak Al-Kwradi
- Department of Chemical and Petroleum Engineering, United Arab Emirates University,, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Labeeb Ali
- Department of Chemical and Petroleum Engineering, United Arab Emirates University,, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University,, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
11
|
Tang D, Ji G, Wang J, Liang Z, Chen W, Ji H, Ma J, Liu S, Zhuang Z, Zhou G. A Multifunctional Amino Acid Enables Direct Recycling of Spent LiFePO 4 Cathode Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309722. [PMID: 38010273 DOI: 10.1002/adma.202309722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Lithium iron phosphate (LiFePO4 , LFP) batteries are extensively used in electric vehicles and energy storage due to their good cycling stability and safety. However, the finite service life of lithium-ion batteries leads to significant amounts of retired LFP batteries, urgently required to be recycled by environmentally friendly and effective methods. Here, a direct regeneration strategy using natural and low-cost L-threonine as a multifunctional reductant is proposed. The hydroxyl groups and amino groups in L-threonine act as electron donors and nitrogen sources, respectively. The reductive environment created by L-threonine not only aids in converting the degraded FePO4 phase back to a single LFP phase but also facilitates the elimination of detrimental Li-Fe anti-site defects; thus, reconstructing fast Li+ diffusion channels. Meanwhile, N atoms derived from amino groups are able to dope into carbon layers, generating more active sites and enhancing the conductive properties of LFP particles. The regenerated LFP shows great electrochemical performance with a discharge capacity of 147.9 mAh g-1 at 1 C and a capacity retention of 86% after 500 cycles at 5 C. Further, this approach is also feasible for LFP black mass sourced from practical industrial dismantling lines, providing considerable prospects for the large-scale recycling of LFP batteries.
Collapse
Affiliation(s)
- Di Tang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guanjun Ji
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junxiong Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Haocheng Ji
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jun Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Song Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaofeng Zhuang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
12
|
Wu S, Wang Q, Fang M, Wu D, Cui D, Pan S, Bai J, Xu F, Wang Z. Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165327. [PMID: 37419347 DOI: 10.1016/j.scitotenv.2023.165327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
With the improvement of living standards, food waste (FW) has become one of the most important organic solid wastes worldwide. Owing to the high moisture content of FW, hydrothermal carbonization (HTC) technology that can directly utilize the moisture in FW as the reaction medium, is widely used. Under mild reaction conditions and short treatment cycle, this technology can effectively and stably convert high-moisture FW into environmentally friendly hydrochar fuel. In view of the importance of this topic, this study comprehensively reviews the research progress of HTC of FW for biofuel synthesis, and critically summarizes the process parameters, carbonization mechanism, and clean applications. Physicochemical properties and micromorphological evolution of hydrochar, hydrothermal chemical reactions of each model component, and potential risks of hydrochar as a fuel are highlighted. Furthermore, carbonization mechanism of the HTC treatment process of FW and the granulation mechanism of hydrochar are systematically reviewed. Finally, potential risks and knowledge gaps in the synthesis of hydrochar from FW are presented and new coupling technologies are pointed out, highlighting the challenges and prospects of this study.
Collapse
Affiliation(s)
- Shuang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China.
| | - Minghui Fang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Dongyang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Da Cui
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Shuo Pan
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Jingru Bai
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Faxing Xu
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| | - Zhenye Wang
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| |
Collapse
|
13
|
Kobelev KV, Gribkova IN, Kharlamova LN, Danilyan AV, Zakharov MA, Lazareva IV, Kozlov VI, Borisenko OA. Study of Brewer's Spent Grain Environmentally Friendly Processing Ways. Molecules 2023; 28:molecules28114553. [PMID: 37299027 DOI: 10.3390/molecules28114553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND This article is devoted to the study of the effect of electrochemically activated water (catholyte with pH 9.3) on organic compounds of the plant matrix of brewer's spent grain in order to extract various compounds from it. METHODS Brewer's spent grain was obtained from barley malt at a pilot plant by mashing the malt followed by filtration and washing of the grain in water and storing it at (0 ± 2) °C in craft bags. For the organic compound quantitative determination, instrumental methods of analysis (HPLC) were used, and the results were subjected to mathematical analysis. RESULTS The study results showed that at atmospheric pressure, the alkaline properties of the catholyte showed better results compared to aqueous extraction with respect to β-glucan, sugars, nitrogenous and phenolic compounds, and 120 min was the best period for extraction at 50 °C. The excess pressure conditions used (0.5 ÷ 1 atm) revealed an increase in the accumulation of non-starch polysaccharide and nitrogenous compounds, while the level of sugars, furan and phenolic compounds decreased with increasing treatment duration. The waste grain extract ultrasonic treatment used revealed the effectiveness of catholyte in relation to the extraction of β-glucan and nitrogenous fractions; however, sugars and phenolic compounds did not significantly accumulate. The correlation method made it possible to reveal the regularities in the formation of furan compounds under the conditions of extraction with the catholyte: Syringic acid had the greatest effect on the formation of 5-OH-methylfurfural at atmospheric pressure and 50 °C and vanillic acid under conditions of excess pressure. Regarding furfural and 5-methylfurfural, amino acids had a direct effect at excess pressure. It was shown that the content of all furan compounds depends on amino acids with thiol groups and gallic acid; the formation of 5-hydroxymethylfurfural and 5-methylfurfural is influenced by gallic and vanillic acids; the release of furfural and 5-methylfurfural is determined by amino acids and gallic acid; excess pressure conditions promote the formation of furan compounds under the action of gallic and lilac acids. CONCLUSIONS This study showed that a catholyte allows for efficient extraction of carbohydrate, nitrogenous and monophenolic compounds under pressure conditions, while flavonoids require a reduction in extraction time under pressure conditions.
Collapse
Affiliation(s)
- Konstantin V Kobelev
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry-Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Irina N Gribkova
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry-Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Larisa N Kharlamova
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry-Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Armen V Danilyan
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry-Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Maxim A Zakharov
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry-Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Irina V Lazareva
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry-Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Valery I Kozlov
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry-Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| | - Olga A Borisenko
- All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry-Branch of V.M. Gorbatov Federal Research Center for Food Systems, 119021 Moscow, Russia
| |
Collapse
|
14
|
Lagos KJ, García D, Cuadrado CF, de Souza LM, Mezzacappo NF, da Silva AP, Inada N, Bagnato V, Romero MP. Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1887. [PMID: 37100045 DOI: 10.1002/wnan.1887] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
Carbon dots (CDs) correspond to carbon-based materials (CBM) with sizes usually below 10 nm. These nanomaterials exhibit attractive properties such us low toxicity, good stability, and high conductivity, which have promoted their thorough study over the past two decades. The current review describes four types of CDs: carbon quantum dots (CQDs), graphene quantum dots (GQDs), carbon nanodots (CNDs), and carbonized polymers dots (CPDs), together with the state of the art of the main routes for their preparation, either by "top-down" or "bottom-up" approaches. Moreover, among the various usages of CDs within biomedicine, we have focused on their application as a novel class of broad-spectrum antibacterial agents, concretely, owing their photoactivation capability that triggers an enhanced antibacterial property. Our work presents the recent advances in this field addressing CDs, their composites and hybrids, applied as photosensitizers (PS), and photothermal agents (PA) within antibacterial strategies such as photodynamic therapy (PDT), photothermal therapy (PTT), and synchronic PDT/PTT. Furthermore, we discuss the prospects for the possible future development of large-scale preparation of CDs, and the potential for these nanomaterials to be employed in applications to combat other pathogens harmful to human health. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina J Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | - David García
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | | | | | | | - Ana Paula da Silva
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Natalia Inada
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Vanderlei Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | | |
Collapse
|
15
|
LIU X, ZHANG W, FEI T, HU X, HU Z, JIN S. Extraction of Seleno-Amino Acids from <i>Cardamine Hupingshanensis</i> by Ultrasonic Assisted Deep Eutectic Solvents Extraction. SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT-JAPAN 2023. [DOI: 10.15261/serdj.30.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Leng L, Zhang W, Chen Q, Zhou J, Peng H, Zhan H, Li H. Machine learning prediction of nitrogen heterocycles in bio-oil produced from hydrothermal liquefaction of biomass. BIORESOURCE TECHNOLOGY 2022; 362:127791. [PMID: 35985462 DOI: 10.1016/j.biortech.2022.127791] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal liquefaction (HTL) of high-moisture biomass or biowaste to produce bio-oil is a promising technology. However, nitrogen-heterocycles (NH) presence in bio-oil is a bottleneck to the upgrading and utilization of bio-oil. The present study applied the machine learning (ML) method (random forest) to predict and help control the bio-oil NH, bio-oil yield, and N content of bio-oil (N_oil). The results indicated that the predictive performance of the yield and N_oil were better than previous studies, achieving test R2 of 0.92 and 0.95, respectively. Acceptable predictive performance (test R2 of 0.82 and RMSE of 7.60) for the prediction of NH was also achieved. The feature importance analysis, partial dependence, and Shapely value were used to interpret the prediction models and study the NH formation mechanisms and behavior. Then, forward optimization of NH was implemented based on optimal predictive models, indicating the high potential of ML-aided bio-oil production and engineering.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Qingyue Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Junhui Zhou
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Haoyi Peng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Hao Zhan
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
17
|
Milasing N, Khuwijitjaru P, Adachi S. Isomerization of galactose to tagatose using arginine as a green catalyst. Food Chem 2022; 398:133858. [DOI: 10.1016/j.foodchem.2022.133858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
|
18
|
Zhao J, Dong L, Wang Y, Zhang J, Zhu R, Li C, Hong M. Amino-acid modulated hierarchical In/H-Beta zeolites for selective catalytic reduction of NO with CH 4 in the presence of H 2O and SO 2. NANOSCALE 2022; 14:5915-5928. [PMID: 35373805 DOI: 10.1039/d2nr00731b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction of NO with CH4 (CH4-SCR) has been studied over a series of amino-acid mediated hierarchical beta zeolites with indium exchange. Amino acid mesoporogens greatly affect the NO reduction (DeNOx) efficiency of In/H-Beta catalysts. Mesoporous In/H-Beta-P synthesized using proline exhibits the highest NOx removal efficiency of 40% in excess oxygen and poisonous SO2 and H2O, 10% higher than our previously optimized In/H-Beta catalyst using commercial beta zeolites with a similar Si/Al ratio. Analyses using XRD, N2 adsorption-desorption, EPR, SEM, TEM, EDX, ICP, 27Al and 29Si MAS NMR, XPS, H2-TPR, NH3-TPD, and Py-IR reveal that amino acids promote beta crystallization, modulate zeolite acid sites and surface oxygen species, and generate hierarchical pore architectures without affecting the Si/Al ratio, indium content, and percentage of the active InO+ species. The mosaic-structured In/H-Beta-P exhibits the strongest Brønsted acidity and surface labile oxygen which enhance the oxyindium interaction with the zeolite framework, promoting CH4-SCR activity. The strong acidity, surface active oxygen species, and mesopores lead to excellent stability of the In/H-Beta-P catalyst in the presence of SO2 and H2O, withstanding several catalytic DeNOx cycles under harsh reaction conditions.
Collapse
Affiliation(s)
- Jiuhu Zhao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P.R. China.
| | - Lei Dong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School (PKUSZ), Shenzhen 518055, P.R. China.
| | - Yungang Wang
- Everbright Environmental Technology Research Institute (Shenzhen) Co., Ltd, Shenzhen 518071, P. R. China
| | - Jingwen Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P.R. China.
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P.R. China.
| | - Chaolin Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P.R. China.
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School (PKUSZ), Shenzhen 518055, P.R. China.
| |
Collapse
|