1
|
Pierpaoli V, Grilc M, Tofani G, Likozar B, Jasiukaitytė-Grojzdek E, Segoloni E, Barbanera M, Romagnoli M. Lignin Derivatives in Chestnut Wood Hydrochar: Mild Solvolysis and Characterization. Chempluschem 2025; 90:e202400697. [PMID: 40152783 DOI: 10.1002/cplu.202400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/14/2025] [Indexed: 03/29/2025]
Abstract
Castanea sativa plays a significant role in the Italian forestry sector, covering 7.5 % of Italy's land. This biomass resource includes significant volumes of wood processing residues: in recent years, its exploitation has shifted from fuel production to high-value applications, focusing on lignocellulosic biomass fractionation to obtain biopolymers. Lignin, the most abundant aromatic biopolymer, has gained attention due to its potential for various industrial uses. Amid chemical treatments, hydrothermal treatment offers a sustainable approach to generate energy and chemicals simultaneously. As depicted in Figure 1, the goal of this study is to evaluate the hydrochar from the hydrothermal treatment of chestnuts to determine the presence of lignin or resulting derivatives which can be isolated for high-value applications. Virgin wood and detannized wood were processed in a hydrothermal reactor at 200 °C. The resulting hydrochar was characterized using FTIR and 2D NMR for functional group analysis, SEM for char morphology, HPSEC for molecular weight determination, TGA for thermal properties and the Folin Test to confirm the preservation of lignin structure post-treatment. Preliminary results indicate lignin is present in certain fractions, suggesting the potentiality of this biomass for lignin production.
Collapse
Affiliation(s)
- Valeria Pierpaoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Institution, Tuscia University, via S. Camillo de Lellis, snc, 01100, Viterbo, Italy
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, Institution, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Center of Excellence for Low Carbon Technology, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Giorgio Tofani
- Department of Catalysis and Chemical Reaction Engineering, Institution, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, Institution, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Edita Jasiukaitytė-Grojzdek
- Department of Catalysis and Chemical Reaction Engineering, Institution, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Enrico Segoloni
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Institution, Tuscia University, via S. Camillo de Lellis, snc, 01100, Viterbo, Italy
| | - Marco Barbanera
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Institution, Tuscia University, via S. Camillo de Lellis, snc, 01100, Viterbo, Italy
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Institution, Tuscia University, via S. Camillo de Lellis, snc, 01100, Viterbo, Italy
| |
Collapse
|
2
|
Yu Y, Li Y, Lou Y, Chen M, Liu Y, Yu H. Tunable Transfer-Hydrodeoxygenated Upgrading of Lignin-Derived Propylphenols to Versatile Value-Added Alkane-Based Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500687. [PMID: 40068114 PMCID: PMC12061236 DOI: 10.1002/advs.202500687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Indexed: 05/10/2025]
Abstract
Catalytic refining of lignin holds promise for producing sustainable platform chemicals. In this work, a gaseous hydrogen-free catalytic hydrodeoxygenation system is developed for upgrading lignin-derived phenols to alkane chemicals. Commercially available Raney Ni and HZSM-5 are used as a combinational catalyst, with isopropanol serving as the hydrogen-donating solvent. By modifying the temperature and the ratio of Raney Ni to HZSM-5, the reaction pathways for hydrogenation and deoxygenation can be tailored to specific requirements. As a result, a 97.1% yield of alkane fuels is achieved, with 64.4% propylcyclohexane and 32.7% propylbenzene obtained in one-pot reaction from the hydrodeoxygenation of 2-methoxy-4-propylphenol using a 3:1 mass ratio of Ni to HZSM-5, further increasing the ratio of HZSM-5 leads to a selectively production of propylbenzene in 62.0% yield. Through careful regulation of the catalytic system and the design of hydrogenation-deoxygenation pathways, excellent yields of 4-propylcyclohexanol (92.2%), propylcyclohexene (93.3%), and propylcyclohexane (93.2%) are directionally achieved. The catalyst maintained a conversion rate of over 99% after five cycles, demonstrating excellent robustness. This study offers a strategic system that expedites the selective upgrading of lignin-derived chemicals, heralding a pathway toward sustainable fuels and chemicals.
Collapse
Affiliation(s)
- Yanyan Yu
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Yilin Li
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Yuhan Lou
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Mengyuan Chen
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Yongzhuang Liu
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationState Key Laboratory of Utilization of Woody Oil ResourceNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
3
|
Liu C, Ni S, Wang Z, Fu Y, Qin M, Zhang Y. Direct In Situ Conversion of Both Lignin and Hemicellulose into Single Functional Biopolymers via Biomass Fractionation Process. Polymers (Basel) 2025; 17:1029. [PMID: 40284293 PMCID: PMC12030649 DOI: 10.3390/polym17081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
During the conventional biomass fractionation, the degradation and dissolution of lignin and hemicellulose result in a complex extract which remains very challenging for the thorough separation and purification of a wide variety of fractionated products, limiting their further utilization. Herein, we proposed a facile and efficient strategy for fractionating biomass and simultaneously in situ converting of both lignin and hemicellulose into single products using a formic acid-phloroglucinol system. The introduced phloroglucinol could react with lignin fragments and hemicellulose-derived products, and the generated intermediate product from hemicellulose can be further condensed with lignin fragments, finally forming single lignin-based functional biopolymers containing heterocyclic structures. Only small amounts of hemicellulosic derivatives, such as oligosaccharides, monosaccharides, furfural, and 5-HMF, were detected in the extracted solution, indicating a highly directional and effective in situ conversion process of hemicellulose. The constructed specific structures on fabric surfaces by using the chelation between lignin-based functional biopolymers and metal ions achieved the preparation of functional fabrics with stable hydrophobicity. The dynamic contact angle of water droplets on the surface of prepared fabric only decreased from 122° to 116.8° over 30 min. This work strategy provides an ideal route to maximize the utilization of both lignin and hemicellulose without involving complex separation and purification procedures. This strategy is the first demonstration of using the targeted fractionation system to achieve the simultaneous conversion of hemicellulose and lignin into single functional biopolymers directly from lignocellulosic biomass.
Collapse
Affiliation(s)
- Caiyun Liu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shuzhen Ni
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhaojiang Wang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yingjuan Fu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Menghua Qin
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yongchao Zhang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
4
|
Chen M, Li Y, Liu H, Zhang D, Guo Y, Shi QS, Xie X. Lignin hydrogenolysis: Tuning the reaction by lignin chemistry. Int J Biol Macromol 2024; 279:135169. [PMID: 39218172 DOI: 10.1016/j.ijbiomac.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes. Lignin is a natural aromatic polymer composed of a variety of monolignols associated with a series of lignin linkage motifs. Hydrogenolysis cleaves various ether bonds in lignin and releases phenolic monomers which can be further upgraded into valuable products, i.e., drugs, terephthalic acid, phenol. This review provides an overview of the state-of-the-art advances of the reagent (lignin), products (hydrol lignin), mass balance, and mechanism of the lignin hydrogenolysis reaction. The chemical structure of lignin is reviewed associated with the free radical coupling of monolignols and the chemical reactions of lignin upon isolation processes. The reactions of lignin linkages upon hydrogenolysis are discussed. The components of hydrol lignin and the selectivity production of phenolic monomers are reviewed. Future challenges on hydrogenolysis of lignin are proposed. This article provides an overview of lignin hydrogenolysis reaction which shows light on the generation of optimized lignin ready for hydrogenolytic depolymerization.
Collapse
Affiliation(s)
- Mingjie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangdong Dimei New Materials Technology Co. Ltd., 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huiming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Dandan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| | - Xiaobao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| |
Collapse
|
5
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
6
|
Li Y, Liu M, Tang Q, Liang K, Sun Y, Yu Y, Lou Y, Liu Y, Yu H. Hydrogen-transfer strategy in lignin refinery: Towards sustainable and versatile value-added biochemicals. CHEMSUSCHEM 2024; 17:e202301912. [PMID: 38294404 DOI: 10.1002/cssc.202301912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Lignin, the most prevalent natural source of polyphenols on Earth, offers substantial possibilities for the conversion into aromatic compounds, which is critical for attaining sustainability and carbon neutrality. The hydrogen-transfer method has garnered significant interest owing to its environmental compatibility and economic viability. The efficacy of this approach is contingent upon the careful selection of catalytic and hydrogen-donating systems that decisively affect the yield and selectivity of the monomeric products resulting from lignin degradation. This paper highlights the hydrogen-transfer technique in lignin refinery, with a specific focus on the influence of hydrogen donors on the depolymerization pathways of lignin. It delineates the correlation between the structure and activity of catalytic hydrogen-transfer arrangements and the gamut of lignin-derived biochemicals, utilizing data from lignin model compounds, separated lignin, and lignocellulosic biomass. Additionally, the paper delves into the advantages and future directions of employing the hydrogen-transfer approach for lignin conversion. In essence, this concept investigation illuminates the efficacy of the hydrogen-transfer paradigm in lignin valorization, offering key insights and strategic directives to maximize lignin's value sustainably.
Collapse
Affiliation(s)
- Yilin Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Meng Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Qi Tang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Kaixia Liang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yaxu Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yanyan Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| |
Collapse
|
7
|
Kenny J, Neefe SR, Brandner DG, Stone ML, Happs RM, Kumaniaev I, Mounfield WP, Harman-Ware AE, Devos KM, Pendergast TH, Medlin JW, Román-Leshkov Y, Beckham GT. Design and Validation of a High-Throughput Reductive Catalytic Fractionation Method. JACS AU 2024; 4:2173-2187. [PMID: 38938803 PMCID: PMC11200236 DOI: 10.1021/jacsau.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Reductive catalytic fractionation (RCF) is a promising method to extract and depolymerize lignin from biomass, and bench-scale studies have enabled considerable progress in the past decade. RCF experiments are typically conducted in pressurized batch reactors with volumes ranging between 50 and 1000 mL, limiting the throughput of these experiments to one to six reactions per day for an individual researcher. Here, we report a high-throughput RCF (HTP-RCF) method in which batch RCF reactions are conducted in 1 mL wells machined directly into Hastelloy reactor plates. The plate reactors can seal high pressures produced by organic solvents by vertically stacking multiple reactor plates, leading to a compact and modular system capable of performing 240 reactions per experiment. Using this setup, we screened solvent mixtures and catalyst loadings for hydrogen-free RCF using 50 mg poplar and 0.5 mL reaction solvent. The system of 1:1 isopropanol/methanol showed optimal monomer yields and selectivity to 4-propyl substituted monomers, and validation reactions using 75 mL batch reactors produced identical monomer yields. To accommodate the low material loadings, we then developed a workup procedure for parallel filtration, washing, and drying of samples and a 1H nuclear magnetic resonance spectroscopy method to measure the RCF oil yield without performing liquid-liquid extraction. As a demonstration of this experimental pipeline, 50 unique switchgrass samples were screened in RCF reactions in the HTP-RCF system, revealing a wide range of monomer yields (21-36%), S/G ratios (0.41-0.93), and oil yields (40-75%). These results were successfully validated by repeating RCF reactions in 75 mL batch reactors for a subset of samples. We anticipate that this approach can be used to rapidly screen substrates, catalysts, and reaction conditions in high-pressure batch reactions with higher throughput than standard batch reactors.
Collapse
Affiliation(s)
- Jacob
K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Sasha R. Neefe
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - David G. Brandner
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Michael L. Stone
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Renee M. Happs
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Ivan Kumaniaev
- Department
of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - William P. Mounfield
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Anne E. Harman-Ware
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Katrien M. Devos
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
- Institute
of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
- Department
of Plant Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Thomas H. Pendergast
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
- Institute
of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
- Department
of Plant Biology, University of Georgia, Athens, Georgia 30602, United States
| | - J. Will Medlin
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
8
|
Bertran-Llorens S, Zhou W, Palazzolo MA, Colpa DL, Euverink GJW, Krooneman J, Deuss PJ. ALACEN: A Holistic Herbaceous Biomass Fractionation Process Attaining a Xylose-Rich Stream for Direct Microbial Conversion to Bioplastics. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7724-7738. [PMID: 38783842 PMCID: PMC11110678 DOI: 10.1021/acssuschemeng.3c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Lignocellulose biorefining is a promising technology for the sustainable production of chemicals and biopolymers. Usually, when one component is focused on, the chemical nature and yield of the others are compromised. Thus, one of the bottlenecks in biomass biorefining is harnessing the maximum value from all of the lignocellulosic components. Here, we describe a mild stepwise process in a flow-through setup leading to separate flow-out streams containing cinnamic acid derivatives, glucose, xylose, and lignin as the main components from different herbaceous sources. The proposed process shows that minimal degradation of the individual components and conservation of their natural structure are possible. Under optimized conditions, the following fractions are produced from wheat straw based on their respective contents in the feed by the ALkaline ACid ENzyme process: (i) 78% ferulic acid from a mild ALkali step, (ii) 51% monomeric xylose free of fermentation inhibitors by mild ACidic treatment, (iii) 82% glucose from ENzymatic degradation of cellulose, and (iv) 55% native-like lignin. The benefits of using the flow-through setup are demonstrated. The retention of the lignin aryl ether structure was confirmed by HSQC NMR, and this allowed monomers to form from hydrogenolysis. More importantly, the crude xylose-rich fraction was shown to be suitable for producing polyhydroxybutyrate bioplastics. The direct use of the xylose-rich fraction by means of the thermophilic bacteria Schlegelella thermodepolymerans matched 91% of the PHA produced with commercial pure xylose, achieving 138.6 mgPHA/gxylose. Overall, the ALACEN fractionation method allows for a holistic valorization of the principal components of herbaceous biomasses.
Collapse
Affiliation(s)
- Salvador Bertran-Llorens
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Wen Zhou
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Martín A. Palazzolo
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
- Instituto
Interdisciplinario de Ciencias Básicas (ICB, UNCuyo-CONICET), Padre Jorge Contreras 1300, Mendoza 5500, Argentina
- Instituto
de Investigaciones en Tecnología Química (INTEQUI),
FQByF, Universidad Nacional de San Luis,
CONICET, Almirante Brown
1455, San Luis 5700, Argentina
| | - Dana l. Colpa
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Gert-Jan W. Euverink
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Janneke Krooneman
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
- Bioconversion
and Fermentation Technology, Research Centre Biobased Economy, Hanze University of Applied Sciences, Zernikeplein 11, Groningen 9747 AS, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
9
|
Chen M, Ralph J, Luterbacher JS, Shi QS, Xie X. Selecting Suitable Near-Native Lignins for Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20751-20761. [PMID: 38065961 DOI: 10.1021/acs.jafc.3c04973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
There are several methods to isolate near-native lignins, including milled-wood lignin, enzymatic lignin, cellulolytic enzyme lignin, and enzymatic mild-acidolysis lignin. Which one is the most representative of the native lignin? Herein, near-native lignins were isolated from different plant groups and structurally analyzed to determine how well these lignins represented their native lignin counterparts. Analytical methods were applied to understand the molecular weight, monomer composition, and distribution of interunit linkages in the structure of the lignins. The results indicated that either enzymatic lignin or cellulolytic enzyme lignin may be used to represent native lignin in softwoods and hardwoods. None of the lignins, however, appeared to represent native lignins in grasses (monocot plants) because of substantial syringyl/guaiacyl differences. Complicating the understanding of grass lignin structure, large amounts of hydroxycinnamates acylate their polysaccharides and, when released, are often conflated with actual lignin monomers.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeremy S Luterbacher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
10
|
Wang Z, Deuss PJ. The isolation of lignin with native-like structure. Biotechnol Adv 2023; 68:108230. [PMID: 37558187 DOI: 10.1016/j.biotechadv.2023.108230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
11
|
Chen M, Li Y, Lu F, Luterbacher JS, Ralph J. Lignin Hydrogenolysis: Phenolic Monomers from Lignin and Associated Phenolates across Plant Clades. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:10001-10017. [PMID: 37448721 PMCID: PMC10337261 DOI: 10.1021/acssuschemeng.3c01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/13/2023] [Indexed: 07/15/2023]
Abstract
The chemical complexity of lignin remains a major challenge for lignin valorization into commodity and fine chemicals. A knowledge of the lignin features that favor its valorization and which plants produce such lignins can be used in plant selection or to engineer them to produce lignins that are more ideally suited for conversion. Sixteen biomass samples were compositionally surveyed by NMR and analytical degradative methods, and the yields of phenolic monomers following hydrogenolytic depolymerization were assessed to elucidate the key determinants controlling the depolymerization. Hardwoods, including those incorporating monolignol p-hydroxybenzoates into their syringyl/guaiacyl copolymeric lignins, produced high monomer yields by hydrogenolysis, whereas grasses incorporating monolignol p-coumarates and ferulates gave lower yields, on a lignin basis. Softwoods, with their more condensed guaiacyl lignins, gave the lowest yields. Lignins with a high syringyl unit content released elevated monomer levels, with a high-syringyl polar transgenic being particularly striking. Herein, we distinguish phenolic monomers resulting from the core lignin vs those from pendent phenolate esters associated with the biomass cell wall, acylating either polysaccharides or lignins. The basis for these observations is rationalized as a means to select or engineer biomass for optimal conversion to worthy phenolic monomers.
Collapse
Affiliation(s)
- Mingjie Chen
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Yanding Li
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Fachuang Lu
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Jeremy S. Luterbacher
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - John Ralph
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Shi L, Zhang T, Zhou X, Yao L, Yang L, Yue F, Lan W, Lu F. Isolation, Characterization, and Depolymerization of l-Cysteine Substituted Eucalyptus Lignin. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100130. [PMID: 35433027 PMCID: PMC8995711 DOI: 10.1002/gch2.202100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Lignin condensation reactions are hard to avoid or control during separation, which is a deterrent to lignin isolation and post-conversation, especially for the full utilization of lignocelluloses. Selective protection of β-aryl ether linkages in the isolation process is crucial to lignin valorization. Herein, a two-step acid/alkali separation method assisted with l-cysteine for eucalyptus lignin separation is developed, and the isolated l-cysteine lignins (LCLs) are comprehensively characterized by 2D NMR, 31P NMR, thioacidolysis, etc. Compared to the two-step control treatment, a much higher β-O-4 content is preserved without reducing the separation efficiency assisted by l-cysteine, which is also significantly higher than alkali lignin and kraft lignin. The results of hydrogenolysis show that LCLs generate a much higher monomer yield than that of control sample. Structural analysis of LCLs suggests that lignin condensation reaction, to some extent, is suppressed by adding l-cysteine during the two-step acid/alkali separation. Further, mechanistic studies using dimeric model compound reveals that l-cysteine may be the α-carbon protective agent in the two-step separation. The role of l-cysteine in the two-step lignin isolation method provides novel insights to the selective fractionation of lignin from biomass, especially for the full valorization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Lanlan Shi
- State Key Laboratory of Pulp and Paper EngineeringSchool of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Tanhao Zhang
- State Key Laboratory of Pulp and Paper EngineeringSchool of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Xin Zhou
- State Key Laboratory of Pulp and Paper EngineeringSchool of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Lu Yao
- State Key Laboratory of Pulp and Paper EngineeringSchool of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Linjie Yang
- State Key Laboratory of Pulp and Paper EngineeringSchool of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper EngineeringSchool of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper EngineeringSchool of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper EngineeringSchool of Light Industry and EngineeringSouth China University of TechnologyGuangzhou510640China
- Department of Biochemistry and Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of WisconsinMadisonWI53726USA
| |
Collapse
|