1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Carbonized Leather Waste: A Review and Conductivity Outlook. Polymers (Basel) 2023; 15:polym15041028. [PMID: 36850311 PMCID: PMC9967325 DOI: 10.3390/polym15041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The carbonization of collagen-based leather waste to nitrogen-containing carbon is reviewed with respect to the preparation, characterization of carbonized products, and applications proposed in the literature. The resulting nitrogen-containing carbons with fibrous morphology have been used as adsorbents in water pollution treatment, in electrocatalysis, and especially in electrodes of energy-storage devices, such as supercapacitors and batteries. Although electrical conductivity has been implicitly exploited in many cases, the quantitative determination of this parameter has been addressed in the literature only marginally. In this report, attention has been newly paid to the determination of conductivity and its dependence on carbonization temperature. The resulting powders cannot be compressed into pellets for routine conductivity determination. A new method has been used to follow the resistivity of powders as a function of pressure up to 10 MPa. The conductivity at this pressure increased from 9.4 × 10-8 S cm-1 for carbonization at 500 °C to 5.3 S cm-1 at 1000 °C. The conductivity of the last sample was comparable with conducting polymers such as polypyrrole. The carbonized leather thus has the potential to be used in applications requiring electrical conduction.
Collapse
|
3
|
Longo L, Taghavi S, Riello M, Ghedini E, Menegazzo F, Di Michele A, Cruciani G, Signoretto M. Waste biomasses as precursors of catalytic supports in benzaldehyde hydrogenation. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
4
|
Gong W, Wang X, Ji S, Wang H. Amorphous RuCoP Ultrafine Nanoparticles Supported on Carbon as Efficient Catalysts for Hydrogenation of Adipic Acid to 1,6-Hexanediol. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8084. [PMID: 36431569 PMCID: PMC9694898 DOI: 10.3390/ma15228084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
As an important raw material for organic synthesis, the 1,6-hexanediol (HDOL) is synthesized by the complicated two-step process traditionally. The hydrogenation of adipic acid (AA) is a potential way to prepare 1,6-hexanediol. At present, amorphous RuMP (M: Co, Ni, Fe, etc.)-based alloys with low Ru content were developed by co-precipitation as the efficient catalysts for converting AA to HDOL via hydrogenation. Among these RuMP catalysts, RuCoP alloys exhibited the highest selectivity and yield to HDOL owing to the electronic effect. The selectivity and yield of HDOL for the optimized RuCoP/C sample was achieved to 80% and 64%, respectively, at 65 bar and 220 °C. A series of RuCoP alloys with different degrees of crystallinity and particle sizes were prepared to investigate the effect of morphology and structure on its catalytic performance. The results indicated that the high catalytic activity of RuCoP/C resulted from its rich active sites due to its amorphous phase and small particle size.
Collapse
Affiliation(s)
- Wei Gong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shan Ji
- College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|