1
|
Wang S, Li X, Ma R, Song G. Catalytic Hydrogenolysis of Lignin into Serviceable Products. Acc Chem Res 2025; 58:529-542. [PMID: 39908014 DOI: 10.1021/acs.accounts.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
ConspectusLignin, a major component of lignocellulosic biomass, accounts for nearly 30% of organic carbon on Earth, making it the most abundant renewable source of aromatic carbon. The valorization of lignin beyond low-value heat and power has been one of the foremost challenges for a long time. On the other hand, aromatic compounds, constituting a substantial segment of the chemical industry and projected to reach a market value of $382 billion by 2030, are predominantly derived from fossil resources, contributing to increased CO2 emissions. Integrating lignin into the aromatic chemical supply chain will offer a promising strategy to reduce the carbon footprint and boost the economic viability of biorefineries. Thus, depolymerizing lignin biopolymers into aromatic chemicals suitable for downstream processing is an important starting point for its valorization. However, owing to lignin's complexity and heterogeneity, achieving efficient and selective depolymerization that yields desirable, isolable aromatic monomers remains a significant scientific challenge.The structure of lignins varies significantly in terms of subunits and linkages across plant species, leading to considerable differences in their reactivity, in the distribution of resulting monomers, and in their subsequent utilization. In this context, this Account highlights our recent studies on the catalytic hydrogenolysis of lignin into serviceable products for preparing valuable materials, fuels, and chemicals. First, we designed a series of catalytic systems for lignin hydrogenolysis specifically tailored to the structural features of lignin from wood, grass, and certain seed coats. To reduce reliance on expensive commercial catalysts like Pd/C, Ru/C, and Pt/C, we advanced heterogeneous metal catalysts by shifting from high-loaded nanostructured metals to low-loaded, atomically dispersed metals and replacing precious metals with nonprecious alternatives. This approach significantly reduces the cost of catalysts, enhances their atomic economy, and improves their catalytic activity and/or selectivity. Then, using the developed catalysts, phenolic monomers tethering a distinct side chain were selectively generated from the hydrogenolysis of lignin (from various plants), achieving yields close to the theoretical maximum. The high selectivity allowed the separation and purification of monomeric phenols from lignin reaction mixtures readily. To gain deeper insights into the cleavage of lignin C-O bonds, we designed deuterium-incorporated β-O-4 mimics (dimers and one polymer) for a mechanistic study, which excluded the pathways involving the loss of linkage protons and led to the proposal of a concerted hydrogenolysis process for β-O-4 cleavage. Finally, to enable the utilization of depolymerized lignin phenolic monomers, unconventional feedstocks in the current chemical industry, we developed a series of methods to transform them into valuable bioactive molecules, functional materials, and high-energy fuels. Overall, these contributions opened new avenues for converting lignin into serviceable products, encompassing upstream processing and downstream applications.
Collapse
Affiliation(s)
- Shuizhong Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiancheng Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rumin Ma
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guoyong Song
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Tiz DB, Tofani G, Vicente FA, Likozar B. Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes. Antioxidants (Basel) 2024; 13:1387. [PMID: 39594529 PMCID: PMC11591419 DOI: 10.3390/antiox13111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Monolignols represent pivotal alcohol-based constituents in lignin synthesis, playing indispensable roles in plant growth and development with profound implications for industries reliant on wood and paper. Monolignols and their derivates have multiple applications in several industries. Monolignols exhibit antioxidant activity due to their ability to donate hydrogen atoms or electrons to neutralize free radicals, thus preventing oxidative stress and damage to cells. Characterized by their alcohol functionalities, monolignols present three main forms: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. In nature, particularly in plants, monolignols with geometry (E) predominate over their Z counterparts. The methods for obtaining the three canonical monolignols, two less-common monolignols, and a monolignol analogue are addressed to present an overview of these phenol-based compounds, particularly from a synthetic standpoint. A SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is used to explain the advantages and disadvantages of synthesizing monolignols, key alcohol-containing raw materials with enormous significance in both plant biology and industrial applications, using bench chemical methods. The uniqueness of this work is that it provides an overview of the synthetic pathways of monolignols to assist researchers in pharmaceutical and biological fields in selecting an appropriate procedure for the preparation of their lignin models. Moreover, we aim to inspire scientists, particularly chemists, to develop more sustainable synthetic protocols for monolignols.
Collapse
Affiliation(s)
- Davide Benedetto Tiz
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Giorgio Tofani
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| | - Filipa A. Vicente
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| |
Collapse
|
3
|
Zhang H, Li Z, Yang X, Li M, Wei L, Yang J. Study on the efficient electrocatalytic depolymerization of α-O-4 bond in lignin assisted by simple electrolyte. Int J Biol Macromol 2024; 279:135260. [PMID: 39226975 DOI: 10.1016/j.ijbiomac.2024.135260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Lignin is anticipated to serve as a replacement for dwindling fossil fuel resources owing to its abundant sources and renewable nature. The electrochemical oxidation technique for depolymerizing lignin has garnered significant interest for its environmentally friendly and mild operating conditions. Nevertheless, the current utilization of auxiliary electrolytes, predominantly organic bases, ionic liquids, and other specialized substances, poses a constraint on the widespread adoption of this approach. Furthermore, there is a scarcity of instances where electrochemical technology has been employed to depolymerize the α-O-4 bond in lignin for the production of highly selective acetals. In this study, a sodium chloride/methanol (NaCl/MeOH) system was utilized for the direct depolymerization of the α-O-4 bond in a lignin model molecule, specifically benzyl phenyl ether (BPE). The optimal conditions resulted in a 95.2 % conversion rate of the BPE substrate and a high yield of 94.5 % for the main product, benzaldehyde dimethyl acetal(Bda). This research offers a promising approach for the electrocatalytic depolymerization of α-O-4 bonds in lignin, leading to the selective production of acetal chemicals using a common auxiliary electrolyte at room temperature in just 2 h.
Collapse
Affiliation(s)
- Hongxi Zhang
- Nanning Normal University, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning 530100, PR China
| | - Zhongke Li
- Nanning Normal University, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning 530100, PR China
| | - Xiande Yang
- Nanning Normal University, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning 530100, PR China
| | - Meng Li
- Nanning Normal University, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning 530100, PR China
| | - Liang Wei
- Nanning Normal University, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning 530100, PR China.
| | - Jing Yang
- Nanning Normal University, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning 530100, PR China.
| |
Collapse
|
4
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
5
|
Jadhav P, Bhuyar P, Misnon II, Rahim MHA, Roslan R. Advancement of lignin into bioactive compounds through selective organic synthesis methods. Int J Biol Macromol 2024; 276:134061. [PMID: 39043289 DOI: 10.1016/j.ijbiomac.2024.134061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
The conversion of lignin into bioactive compounds through selective organic synthesis methods represents a promising frontier in the pursuit of sustainable raw materials and green chemistry. This review explores the versatility of lignin-derived bioactive compounds, ranging from their application in drug discovery to their role in the development of biodegradable materials. Despite notable advancements, the synthesis routes and yields of highly bioactive molecules from lignin still require further exploration and improvement. This review provides an in-depth examination of the progress made in understanding the complex structure of lignin and developing innovative approaches to exploit its potential. Specifically, the types of lignins covered include softwood Kraft lignin, hardwood organosolv lignin, and soda lignin. This work is divided into three parts: first, the transformation of lignin into bioactive molecules with chemically active centres and functionalised hydroxyl groups through depolymerisation; second, kinetic modelling techniques essential for understanding the chemical kinetics of lignin and enabling significant scaling up in the conversion of organic molecules; third, efficient catalytic pathways for synthesising molecules with anticancer and antibacterial properties. In conclusion, this comprehensive review spurs further investigations into lignin-derived bioactive compounds, their applications, and the advancement of sustainable processes.
Collapse
Affiliation(s)
- Pramod Jadhav
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Pahang, Malaysia
| | - Prakash Bhuyar
- International College (MJU-IC), Maejo University, Chiang Mai 50290, Thailand
| | - Izan Izwan Misnon
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Pahang, Malaysia
| | - Mohd Hasbi Ab Rahim
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Pahang, Malaysia
| | - Rasidi Roslan
- Centre for Advanced Intelligent Materials, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Malaysia; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang Kuantan, Pahang, Malaysia.
| |
Collapse
|
6
|
Wu X, Smet E, Brandi F, Raikwar D, Zhang Z, Maes BUW, Sels BF. Advancements and Perspectives toward Lignin Valorization via O-Demethylation. Angew Chem Int Ed Engl 2024; 63:e202317257. [PMID: 38128012 DOI: 10.1002/anie.202317257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Lignin represents the largest aromatic carbon resource in plants, holding significant promise as a renewable feedstock for bioaromatics and other cyclic hydrocarbons in the context of the circular bioeconomy. However, the methoxy groups of aryl methyl ethers, abundantly found in technical lignins and lignin-derived chemicals, limit their pertinent chemical reactivity and broader applicability. Unlocking the phenolic hydroxyl functionality through O-demethylation (ODM) has emerged as a valuable approach to mitigate this need and enables further applications. In this review, we provide a comprehensive summary of the progress in the valorization of technical lignin and lignin-derived chemicals via ODM, both catalytic and non-catalytic reactions. Furthermore, a detailed analysis of the properties and potential applications of the O-demethylated products is presented, accompanied by a systematic overview of available ODM reactions. This review primarily focuses on enhancing the phenolic hydroxyl content in lignin-derived species through ODM, showcasing its potential in the catalytic funneling of lignin and value-added applications. A comprehensive synopsis and future outlook are included in the concluding section of this review.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Ewoud Smet
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Francesco Brandi
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Deepak Raikwar
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Zhenlei Zhang
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
7
|
Zhu G, Xie H, Ye D, Zhang J, Huang K, Liao B, Chen J. Sustainable production of catechol derivatives from waste tung nutshell C/G-type lignin via heterogeneous Cu-NC catalytic oxidation. RSC Adv 2024; 14:5069-5076. [PMID: 38332785 PMCID: PMC10851056 DOI: 10.1039/d3ra08052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The sustainable production of catechol derivatives is a challenging task. Catechyl (C) and guaiacyl (G) lignins coexisting in waste tung nutshells are promising feedstocks to form valuable catechol derivatives, but the depolymerization of C/G lignin typically involves a catalytic reductive process that cannot produce these oxidized aromatic chemicals. Herein, we demonstrated that the sustainable production of catechol derivative aldehydes and acids from C/G lignin could be achieved through a heterogeneous copper-catalyzed oxidative process. Under optimized conditions, the Cu-NC-800 catalyst affords a 43.5 mg g-1 yield (8.9 wt%, based on Klason lignin) of aromatic aldehydes (protocatechuic aldehyde, vanillin) and acids (protocatechuic acid, vanillic acid). XRD and XPS analyses showed that CuO and Cu2O may be the active species during the heterogeneous oxidation of the Cu-NC-800 catalyst. This study opens new opportunities for the sustainable production of catechol derivatives from C/G-type lignin.
Collapse
Affiliation(s)
- Guozhi Zhu
- Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou 510665 China
| | - Hongmei Xie
- Department of Chemical Engineering, Maoming Vocational and Technical College Maoming 525027 China
- School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 510006 China
| | - Dawei Ye
- Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou 510665 China
| | - Junjie Zhang
- Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou 510665 China
| | - Kangping Huang
- Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou 510665 China
| | - Bing Liao
- Guangdong Academy of Sciences Guangzhou 510070 China
| | - Jiazhi Chen
- Institute of Chemical Engineering, Guangdong Academy of Sciences Guangzhou 510665 China
| |
Collapse
|
8
|
The temptation from homogeneous linear catechyl lignin. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|