1
|
Kochman MA, Durbeej B. Simulating the Energy Capture Process in Push-Pull Norbornadiene-Quadricyclane Photoswitches. J Phys Chem Lett 2025; 16:4315-4325. [PMID: 40266652 PMCID: PMC12051204 DOI: 10.1021/acs.jpclett.5c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Molecular switches based on the norbornadiene-quadricyclane (NBD-QC) isomer pair are among the most promising candidates for applications in molecular solar thermal energy storage (MOST). In these compounds, solar energy is captured through a photoinduced [2 + 2] cycloaddition reaction whose mechanism is only partially understood. This holds true especially for NBD derivatives containing the type of push-pull substitution pattern that was previously proven necessary to attain reasonable photoisomerization quantum yields. In the present contribution, we report a computational investigation of the photochemistry of NBD-QC switches with precisely such a substitution pattern. Static calculations provide information on the structures of the excited electronic states involved in the photoinduced cycloaddition reaction, and the topographies of the relevant ground- and excited-state potential energy surfaces. Furthermore, nonadiabatic molecular dynamics (NAMD) simulations allow an estimation of the reaction time scale and quantum yield. The simulation results paint a detailed picture of the energy capture process: the photoinduced cycloaddition reaction begins in the spectroscopically bright excited state of the molecular switch. In the model compound for which we performed NAMD simulations, ring closing takes place on a time scale of roughly 150 fs, which makes it one of the fastest known photoisomerization reactions.
Collapse
Affiliation(s)
- Michał Andrzej Kochman
- Institute
of Physical Chemistry of the Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
- Theoretical
Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Bo Durbeej
- Division
of Theoretical Chemistry, Department of Physics, Chemistry and Biology
(IFM), Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
2
|
Krappmann D, Hirsch A. Synthesis and photoinduced switching properties of C 7-heteroatom containing push-pull norbornadiene derivatives. Beilstein J Org Chem 2025; 21:807-816. [PMID: 40297250 PMCID: PMC12035880 DOI: 10.3762/bjoc.21.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
We report the synthesis and characterization of heteroatom-incorporated norbornadiene (NBD) derivatives. Push-pull substitution on the 2 and 3 position as well as introduction of oxygen or nitrogen at position 7 of the NBD scaffold have led to the development of a new family of photoswitches. We studied the potential conversion of norbornadiene to quadricyclane (QC) isomers. As main investigation tools, UV-vis and NMR spectroscopy were utilized. We determined significant spectral features of the formed NBD species, including λmax and λonset values, all of which exhibit redshifts compared to their isocyclic counterparts. Additionally, the selected QC isomers were subjected to thermal and catalytic back-conversion studies.
Collapse
Affiliation(s)
- Daniel Krappmann
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058 Erlangen, Germany
| | - Andreas Hirsch
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Krappmann D, Hirsch A. Synthesis, Characterization and Interconversion of p-Tolylsulfone-Functionalized Norbornadiene/Quadricyclane Couples. Chemistry 2024; 30:e202401391. [PMID: 38984830 DOI: 10.1002/chem.202401391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
We report the synthesis and characterization of library of new 2,3-disubstituted norbornadiene/quadricyclane couples. For the first time, the para-tolylsulfone moiety was employed as electron-withdrawing substituent in combination with a variety of different electron donors as counterparts. Comprehensive characterization was conducted for every interconversion couple. By comparison with structurally related molecules published before we established the tosyl moiety as suitable alternative to previously investigated ester functionalities by providing similar photophysical properties. The photo-induced interconversion behavior was investigated via UV/Vis- and NMR-spectroscopy. The UV/Vis experiments were carried out exclusively in acetonitrile, whereas several solvents were investigated in the NMR studies. A detailed description and comparison of the isomerization behavior is provided, while examining relevant optical properties like λmax and λonset. Thereby, an enhanced red-shift up to λmax=394 nm combined with an λonset value of 469 nm could be generated which is necessary for potential applications.
Collapse
Affiliation(s)
- Daniel Krappmann
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Hemauer F, Steinrück HP, Papp C. The Norbornadiene/Quadricyclane Pair as Molecular Solar Thermal Energy Storage System: Surface Science Investigations. Chemphyschem 2024; 25:e202300806. [PMID: 38375756 DOI: 10.1002/cphc.202300806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
For the transition to renewable energy sources, novel energy storage materials are more important than ever. This review addresses so-called molecular solar thermal (MOST) systems, which appear very promising since they combine light harvesting and energy storing in one-photon one-molecule processes. The focus is on norbornadiene (NBD), a particularly interesting candidate, which is converted to the strained valence isomer quadricyclane (QC) upon irradiation. The stored energy can be released on demand. The energy-releasing cycloreversion from QC to NBD can be initiated by a thermal, catalytic, or electrochemical trigger. The reversibility of the energy storage and release cycles determines the general practicality of a MOST system. In the search for derivatives, which enable large-scale applications, fundamental surface science studies help to assess the feasibility of potential substituted NBD/QC couples. We include investigations under well-defined ultra-high vacuum (UHV) conditions as well as experiments in liquid phase. Next to the influence of the catalytically active surfaces on the isomerization between the two valence isomers, information on adsorption geometries, thermal stability limits, and reaction pathways of the respective molecules are discussed. Moreover, laboratory-scaled test devices demonstrate the proof of concept in various areas of application.
Collapse
Affiliation(s)
- Felix Hemauer
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
- Angewandte Physikalische Chemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Christian Papp
- Angewandte Physikalische Chemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Castro F, Gancheff JS, Ramos JC, Seoane G, Bazzicalupi C, Bianchi A, Ridi F, Savastano M. A Norbornadiene-Based Molecular System for the Storage of Solar-Thermal Energy in an Aqueous Solution: Study of the Heat-Release Process Triggered by a Co(II)-Complex. Molecules 2023; 28:7270. [PMID: 37959690 PMCID: PMC10650538 DOI: 10.3390/molecules28217270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
It is urgent yet challenging to develop new environmentally friendly and cost-effective sources of energy. Molecular solar thermal (MOST) systems for energy capture and storage are a promising option. With this in mind, we have prepared a new water-soluble (pH > 6) norbornadiene derivative (HNBD1) whose MOST properties are reported here. HNBD1 shows a better matching to the solar spectrum compared to unmodified norbornadiene, with an onset absorbance of λonset = 364 nm. The corresponding quadricyclane photoisomer (HQC1) is quantitatively generated through the light irradiation of HNBD1. In an alkaline aqueous solution, the MOST system consists of the NBD1-/QC1- pair of deprotonated species. QC1- is very stable toward thermal back-conversion to NBD1-; it is absolutely stable at 298 K for three months and shows a marked resistance to temperature increase (half-life t½ = 587 h at 371 K). Yet, it rapidly (t½ = 11 min) releases the stored energy in the presence of the Co(II) porphyrin catalyst Co-TPPC (ΔHstorage = 65(2) kJ∙mol-1). Under the explored conditions, Co-TPPC maintains its catalytic activity for at least 200 turnovers. These results are very promising for the creation of MOST systems that work in water, a very interesting solvent for environmental sustainability, and offer a strong incentive to continue research towards this goal.
Collapse
Affiliation(s)
- Franco Castro
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Gral. Flores 2124, Montevideo 11800, Uruguay;
- Laboratorio de Química Fina, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Rutas 8 y 101 s/n, Pando 91000, Uruguay;
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Jorge S. Gancheff
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Gral. Flores 2124, Montevideo 11800, Uruguay;
| | - Juan C. Ramos
- Laboratorio de Química Fina, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass de Rutas 8 y 101 s/n, Pando 91000, Uruguay;
- Área Química Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay;
| | - Gustavo Seoane
- Área Química Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay;
| | - Carla Bazzicalupi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (C.B.); (A.B.); (F.R.)
| | - Antonio Bianchi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (C.B.); (A.B.); (F.R.)
| | - Francesca Ridi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (C.B.); (A.B.); (F.R.)
- CSGI Consortium, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Italy
| | - Matteo Savastano
- Dipartimento di Scienze Umane e Promozione della Qualità della Vita, Università Telematica San Raffaele Roma, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
6
|
Hemauer F, Krappmann D, Schwaab V, Hussain Z, Freiberger EM, Waleska-Wellnhofer NJ, Franz E, Hampel F, Brummel O, Libuda J, Hirsch A, Steinrück HP, Papp C. Surface science and liquid phase investigations of oxanorbornadiene/oxaquadricyclane ester derivatives as molecular solar thermal energy storage systems on Pt(111). J Chem Phys 2023; 159:074703. [PMID: 37602805 DOI: 10.1063/5.0158124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved. In this study, we investigate the surface chemistry of oxa-norbornadiene/quadricyclane derivatives on a Pt(111) surface. Specifically, we focus on the energy storage and release properties of molecules that are substituted with ester moieties of different sizes. For our model catalytic approach, synchrotron radiation-based x-ray photoelectron spectroscopy measurements were conducted in ultra-high vacuum (UHV) and correlated with the catalytic behavior in the liquid phase monitored by photochemical infrared reflection absorption spectroscopy. The differences in their spectral appearance enabled us to unambiguously differentiate the energy-lean and energy-rich isomers and decomposition products. Next to qualitative information on the adsorption motifs, temperature-programmed experiments allowed for the observation of thermally induced reactions and the deduction of the related reaction pathways. We analyzed the selectivity of the cycloreversion reaction from the energy-rich quadricyclane derivative to its energy-lean norbornadiene isomer and competing processes, such as desorption and decomposition. For the 2,3-bis(methylester)-substitution, the cycloreversion reaction was found to occur between 310 and 340 K, while the thermal stability limit of the compounds was determined to be 380 K. The larger 2,3-bis(benzylester) derivatives have a lower apparent adsorption energy and a decomposition onset already at 135 K. In the liquid phase (in acetonitrile), we determined the rate constants for the cycloreversion reaction on Pt(111) to k = 5.3 × 10-4 s-1 for the 2,3-bis(methylester)-substitution and k = 6.3 × 10-4 s-1 for the 2,3-bis(benzylester) derivative. The selectivities were of >99% and 98% for the two molecules, respectively. The difference in the catalytic behavior of Pt(111) for both derivatives is less pronounced in the liquid phase than in UHV, which we attribute to the passivation of the Pt(111) surface by carbonaceous species under ambient conditions.
Collapse
Affiliation(s)
- Felix Hemauer
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Daniel Krappmann
- Lehrstuhl für Organische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Valentin Schwaab
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Zarah Hussain
- Lehrstuhl für Katalytische Grenzflächenforschung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Eva Marie Freiberger
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Natalie J Waleska-Wellnhofer
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Evanie Franz
- Lehrstuhl für Katalytische Grenzflächenforschung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Frank Hampel
- Lehrstuhl für Organische Chemie I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Olaf Brummel
- Lehrstuhl für Katalytische Grenzflächenforschung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Jörg Libuda
- Lehrstuhl für Katalytische Grenzflächenforschung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Andreas Hirsch
- Lehrstuhl für Organische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Christian Papp
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
- Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
7
|
Franz E, Jung J, Kunz A, Wegner HA, Brummel O, Mollenhauer D, Libuda J. How Adsorption Affects the Energy Release in an Azothiophene-Based Molecular Solar-Thermal System. J Phys Chem Lett 2023; 14:1470-1477. [PMID: 36744855 DOI: 10.1021/acs.jpclett.2c03732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Molecular solar-thermal (MOST) systems combine solar energy conversion, storage, and release within one single molecule. To release the energy, different approaches are applicable, e.g., the electrochemical and the catalytic pathways. While the electrochemical pathway requires catalytically inert electrode materials, the catalytic pathway requires active and selective catalysts. In this work, we studied the catalytic activity and selectivity of graphite(0001), Pt(111), and Au(111) surfaces for the energy release from the MOST system 3-cyanophenylazothiophene along with its adsorption properties. In our study, we combine in situ photochemical IR spectroscopy and density functional theory (DFT). Graphite(0001) is catalytically inactive, shows the weakest reactant-surface interaction, and therefore is ideally suitable for electrochemical triggering. On Pt(111), we observe strong reactant-surface interactions along with moderate catalytic activity and partial decomposition, which limit the applicability of this material. On Au(111), we observe high catalytic activity and high selectivity (>99%). We assign these catalytic properties to the moderate reactant surface interaction, which prevents decomposition but facilitates energy release via a singlet-triplet mechanism.
Collapse
Affiliation(s)
- Evanie Franz
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058Erlangen, Germany
| | - Jannis Jung
- Institute of Physical Chemistry, Justus Liebig University Giessen, DE-35392Giessen, Germany
- Center for Materials Research (ZfM), Justus Liebig University Giessen, DE-35392Giessen, Germany
| | - Anne Kunz
- Center for Materials Research (ZfM), Justus Liebig University Giessen, DE-35392Giessen, Germany
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392Giessen, Germany
| | - Hermann A Wegner
- Center for Materials Research (ZfM), Justus Liebig University Giessen, DE-35392Giessen, Germany
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392Giessen, Germany
| | - Olaf Brummel
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058Erlangen, Germany
| | - Doreen Mollenhauer
- Institute of Physical Chemistry, Justus Liebig University Giessen, DE-35392Giessen, Germany
- Center for Materials Research (ZfM), Justus Liebig University Giessen, DE-35392Giessen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058Erlangen, Germany
| |
Collapse
|
8
|
Merino-Robledillo C, Marazzi M. Taking up the quest for novel molecular solar thermal systems: Pros and cons of storing energy with cubane and cubadiene. Front Chem 2023; 11:1171848. [PMID: 37123877 PMCID: PMC10130657 DOI: 10.3389/fchem.2023.1171848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Molecular solar thermal (MOST) systems are working their way as a possible technology to store solar light and release it when necessary. Such systems could, in principle, constitute a solution to the energy storage problem characteristic of solar cells and are conceived, at a first instance, as simple molecular photoswitches. Nevertheless, the optimization of their different required properties is presently limiting their technological scale up. From the chemical perspective, we need to design a novel MOST system based on unconventional photoswitches. Here, by applying multi-configurational quantum chemistry methods, we unravel the potentialities of ad hoc-designed molecular photoswitches, which aim to photoproduce cubane or cubadiene as high-energy isomers that can be thermally (or eventually catalytically) reverted to the initial structure, releasing their stored energy. Specifically, while cubane can be photoproduced via different paths depending on the reactant tricycle diene conformation, an undesired bicyclic by-product limits its application to MOST systems. An evolution of this starting design toward cubadiene formation is therefore proposed, avoiding conformational equilibria and by-products, considerably red shifting the absorption to reach the visible portion of the solar spectrum and maintaining an estimated storage density that is expected to overcome the current MOST reference system (norbornadiene/quadricyclane), although consistently increasing the photoisomerization energy barrier.
Collapse
Affiliation(s)
- Cecilia Merino-Robledillo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Alcalá de Henares, Madrid, Spain
| | - Marco Marazzi
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Alcalá de Henares, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química ‘‘Andrés M. del Río’’ (IQAR), Alcalá de Henares, Madrid, Spain
- *Correspondence: Marco Marazzi,
| |
Collapse
|