1
|
Tsai CY, Chang WH, Lu MY, Chen LJ. Advances in the heterostructures for enhanced hydrogen production efficiency: a comprehensive review. NANOSCALE 2024; 16:16376-16403. [PMID: 39171376 DOI: 10.1039/d4nr01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The growing global energy demand and heightened environmental consciousness have contributed to the increasing interest in green energy sources, including hydrogen production. However, the efficacy of this technology is contingent upon the efficient separation of charges, high absorption of sunlight, rapid charge transfer rate, abundant active sites and resistance to photodegradation. The utilization of photocatalytic heterostructures coupling two materials has proved to be effective in tackling the aforementioned challenges and delivering exceptional performance in the production of hydrogen. The present article provides a comprehensive overview of operational principles of photocatalysis and the combination of photocatalytic and piezo-catalytic applications with heterostructures, including the transfer behavior and mechanisms of photoexcited non-equilibrium carriers between the materials. Furthermore, the effects of recent advances and state-of-the-art designs of heterostructures on hydrogen production are discussed, offering practical approaches to form heterostructures for efficient hydrogen production.
Collapse
Affiliation(s)
- Chen-Yo Tsai
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Wei-Hsuan Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ming-Yen Lu
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Lih-Juann Chen
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Li J, Han J, Zou X, Xu N, Gu F, Su N, Li C, Dong H. Cocreation of photogenerated electron and hole collectors on polymeric carbon nitride synergistically promotes carrier separation and reaction kinetics towards propelling photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 667:101-110. [PMID: 38621332 DOI: 10.1016/j.jcis.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
It is a challenging issue for the creation of photogenerated carrier collectors on the photocatalyst to drive charge separation and promote reaction kinetics in the photocatalytic reaction. Herein, based on one-step dual-modulation strategy, IrO2 nanodots are modified at the edge of polymeric carbon nitride (PCN) nanosheets and atomically dispersed Ir atoms are implanted in the skeleton of PCN to obtain a unique Ir-PCN/IrO2 photocatalyst. IrO2 nanodots and atomically dispersed Ir atoms act as hole and electron collectors to synergistically promote the carrier separation and reaction kinetics, respectively, thereby greatly improving the photocatalytic hydrogen evolution (PHE) performance. As a result, without adding additional cocatalyst, the PHE rate over the optimal Ir-PCN/IrO2-2% sample reaches up to 1564.4 μmol h-1 g-1 under the visible light irradiation, with achieving an apparent quantum yield (AQY) of 15.7% at 420 nm.
Collapse
Affiliation(s)
- Jiaming Li
- College of Chemistry, Jilin Normal University, Siping 136000, PR China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinlong Han
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiyue Zou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Na Xu
- College of Chemistry, Jilin Normal University, Siping 136000, PR China.
| | - Fang Gu
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, PR China.
| | - Nan Su
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Zhong X, Zhu Y, Wang Y, Jia Z, Jiang M, Sun Q, Yao J. Intramolecular Quaternary Carbon Nitride Homojunction for Enhanced Visible Light Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402219. [PMID: 38634337 DOI: 10.1002/smll.202402219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Indexed: 04/19/2024]
Abstract
In this work, an intramolecular carbon nitride (CN)-based quaternary homojunction functionalized with pyridine rings is prepared via an in situ alkali-assisted copolymerization strategy of bulk CN and 2-aminopyridine for efficient visible light hydrogen generation. In the obtained structure, triazine-based CN (TCN), heptazine-based CN (HCN), pyridine unit incorporated TCN, and pyridine ring inserted HCN constitute a special multicomponent system and form a built-in electric field between the crystalline semiconductors by the arrangement of energy band levels. The electron-withdrawing function of the conjugated heterocycle can trigger the skeleton delocalization and edge induction effect. Highly accelerated photoelectron-hole transfer rates via multi-stepwise charge migration pathways are achieved by the synergistic effect of the functional group modification and molecular quaternary homojunction. Under the addition of 5 mg 2-aminopyridine, the resulting homojunction framework exhibits a significantly improved hydrogen evolution rate of 6.64 mmol g-1 h-1 with an apparent quantum efficiency of 12.27% at 420 nm. Further, the catalyst verifies its potential commercial value since it can produce hydrogen from various real water environments. This study provides a reliable way for the rational design and fabrication of intramolecular multi-homojunction to obtain high-efficient photocatalytic reactions.
Collapse
Affiliation(s)
- Xiang Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhengtao Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Meng Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qiufan Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
4
|
Zhang K, Wang R, Zhong X, Jiang F. Preparation and Application of a Novel S-Scheme Nanoheterojunction Photocatalyst (LaNi 0.6Fe 0.4O 3/g-C 3N 4). ACS OMEGA 2024; 9:28422-28436. [PMID: 38973884 PMCID: PMC11223155 DOI: 10.1021/acsomega.4c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Rapid recombination of photogenerated electrons and holes affects the performance of a semiconductor device and limits the efficiency of photocatalytic water splitting for hydrogen production. The use of an S-scheme nanoscale heterojunction catalyst for the separation of photogenerated charge carriers is a feasible approach to achieve high-efficiency photocatalytic hydrogen evolution. Therefore, we synthesized a three-dimensional S-scheme nanoscale heterojunction catalyst (LaNi0.6Fe0.4O3/g-C3N4) and investigated its activity in photocatalytic water splitting. An analysis of the band structure (XPS, UPS, and Mott-Schottky) indicated effective interfacial charge transfer in an S-scheme nanoscale heterojunction composed of two n-type semiconductors. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) spectroscopy confirmed that the light-induced charge transfer followed the S-scheme mechanism. Based on the capture test (EPR) of •OH free radicals, it can be seen that the enhanced activity is attributed to the S-scheme carrier migration mechanism in heterojunction, which promotes the rapid adsorption of H+ by the abundant amino sites in g-C3N4, thus effectively generating H2. The 2D/2D LaNi0.6Fe0.4O3/g-C3N4 heterojunction has a good interface and produces a built-in electric field, improving the separation of e- and h+ while increasing the oxygen vacancy. The synergistic effect of the heterostructure and oxygen vacancy makes the photocatalyst significantly better than LaNi0.6Fe0.4O3 and g-C3N4 in visible light. The hydrogen evolution rate of the composite catalyst (LaNi0.6Fe0.4O3/g-C3N4-70 wt %) was 34.50 mmol·h-1·g-1, which was 40.6 times and 9.2 times higher than that of the catalysts (LaNiO3 and g-C3N4), respectively. After 25 h of cyclic testing, the catalyst (LaNi0.6Fe0.4O3/g-C3N4-70 wt %) composite material still exhibited excellent hydrogen evolution performance and photostability. It was confirmed that the synergistic effect between abundant active sites, enriched oxygen vacancies, and 2D/2D heterojunctions improved the photoinduced carrier separation and the light absorption efficiency of visible light. This study opens up new possibilities for the logical design of efficient photodecomposition using 2D/2D heterojunctions combined with oxygen vacancies.
Collapse
Affiliation(s)
- Kexin Zhang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Wang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute
of Chemical Engineering and Technology, Xi’an Jiao Tong University, Xi’an 710049, China
| | - Xin Zhong
- Department
of Chemistry, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Fubin Jiang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
5
|
Li H, Zhang G, Zhang P, Mi H. In-situ one-step construction of poly(heptazine imide)/poly(triazine imide) heterojunctions for photocatalytic hydrogen evolution. CHEMSUSCHEM 2024; 17:e202301849. [PMID: 38316609 DOI: 10.1002/cssc.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The construction of heterojunctions is challenging, requiring atomic-level contact and interface matching. Here, we have achieved atomic-level interfacial matching by constructing poly(heptazine imide)/poly(triazine imide) crystalline carbon nitride heterojunctions in an in-situ one-step method. The content of poly(triazine imide) in heterojunctions is positively related to the proportion of lithium chloride in potassium chloride and lithium chloride mixed-salts. The optimized heterojunction achieves an apparent quantum efficiency of 48.34 % for photocatalytic hydrogen production at 420 nm, which is at a good level in polymeric carbon nitride photocatalysts. The proposed ion-thermal assisted heterojunction construction strategy contributes to the development of polymeric carbon nitride photocatalysts with high crystallization and high charge separation efficiency.
Collapse
Affiliation(s)
- Hui Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Guoqiang Zhang
- School of Physical Sciences, Great Bay University, Dongguan, Guangdong, 523000, PR China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongwei Mi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
6
|
Mao L, Zhai B, Shi J, Kang X, Lu B, Liu Y, Cheng C, Jin H, Lichtfouse E, Guo L. Supercritical CH 3OH-Triggered Isotype Heterojunction and Groups in g-C 3N 4 for Enhanced Photocatalytic H 2 Evolution. ACS NANO 2024; 18:13939-13949. [PMID: 38749923 DOI: 10.1021/acsnano.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The structure tuning of bulk graphitic carbon nitride (g-C3N4) is a critical way to promote the charge carriers dynamics for enhancing photocatalytic H2-evolution activity. Exploring feasible post-treatment strategies can lead to effective structure tuning, but it still remains a great challenge. Herein, a supercritical CH3OH (ScMeOH) post-treatment strategy (250-300 °C, 8.1-11.8 MPa) is developed for the structure tuning of bulk g-C3N4. This strategy presented advantages of time-saving (less than 10 min), high yield (over 80%), and scalability due to the enhanced mass transfer and high reactivity of ScMeOH. During the ScMeOH post-treatment process, CH3OH molecules diffused into the interlayers of g-C3N4 and subsequently participated in N-methylation and hydroxylation reactions with the intralayers, resulting in a partial phase transformation from g-C3N4 into carbon nitride with a poly(heptazine imide)-like structure (Q-PHI) as well as abundant methyl and hydroxyl groups. The modified g-C3N4 showed enhanced photocatalytic activity with an H2-evolution rate 7.2 times that of pristine g-C3N4, which was attributed to the synergistic effects of the g-C3N4/Q-PHI isotype heterojunction construction, group modulation, and surface area increase. This work presents a post-treatment strategy for structure tuning of bulk g-C3N4 and serves as a case for the application of supercritical fluid technology in photocatalyst synthesis.
Collapse
Affiliation(s)
- Liuhao Mao
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Binjiang Zhai
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Jinwen Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Xing Kang
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Bingru Lu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Yanbing Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Cheng Cheng
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Hui Jin
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| |
Collapse
|
7
|
Feng B, Liu Y, Wan K, Zu S, Pei Y, Zhang X, Qiao M, Li H, Zong B. Tailored Exfoliation of Polymeric Carbon Nitride for Photocatalytic H 2O 2 Production and CH 4 Valorization Mediated by O 2 Activation. Angew Chem Int Ed Engl 2024; 63:e202401884. [PMID: 38376362 DOI: 10.1002/anie.202401884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
The exfoliation of bulk C3N4 (BCN) into ultrathin layered structure is an effective strategy to boost photocatalytic efficiency by exposing interior active sites and accelerating charge separation and transportation. Herein, we report a novel nitrate anion intercalation-decomposition (NID) strategy that is effective in peeling off BCN into few-layer C3N4 (fl-CN) with tailored thickness down to bi-layer. This strategy only involves hydrothermal treatment of BCN in diluted HNO3 aqueous solution, followed by pyrolysis at various temperatures. The decomposition of the nitrate anions not only exfoliates BCN and changes the band structure, but also incorporates oxygen species onto fl-CN, which is conducive to O2 adsorption and hence relevant chemical processes. In photocatalytic O2 reduction under visible light irradiation, the H2O2 production rate over the optimal fl-CN-530 catalyst is 952 μmol g-1 h-1, which is 8.8 times that over BCN. More importantly, under full arc irradiation and in the absence of hole scavenger, CH4 can be photocatalytically oxidized by on-site formed H2O2 and active oxygen species to generate value-added C1 oxygenates with high selectivity of 99.2 % and record-high production rate of 1893 μmol g-1 h-1 among the metal-free C3N4-based photocatalysts.
Collapse
Affiliation(s)
- Bo Feng
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yanan Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Kun Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Sijie Zu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yan Pei
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoxin Zhang
- State Key Laboratory of Catalytic Materials and Chemical Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, P. R. China
| | - Minghua Qiao
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Hexing Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Baoning Zong
- State Key Laboratory of Catalytic Materials and Chemical Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, P. R. China
| |
Collapse
|
8
|
Lei L, Fan H, Jia Y, Lv L, Miao J, Wang W. Cyanuric Acid-Assisted Synthesis of Hierarchical Amorphous Carbon Nitride Assembled by Ultrathin Oxygen-Doped Nanosheets for Excellent Photocatalytic Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497947 DOI: 10.1021/acsami.3c18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Amorphous carbon nitride with typical short-range order arrangement as an effective photocatalyst is worth exploring but remains a great challenge because its disordered structure induces severe recombination of photogenerated charge carriers. Herein, for the first time, we demonstrate that a hierarchical amorphous carbon nitride (HACN) with structural oxygen incorporation can be synthesized via a cyanuric acid-assisted melem hydrothermal process, accompanied by freeze-drying and pyrolysis. The complex composed of melem and cyanuric acid exhibiting a unique 3D self-supporting skeleton and significant phase transformation is responsible for the formation of an interconnected hierarchical framework and amorphous structure for HACN. These features are beneficial to enhance its visible light harvesting by the multiple-reflection effect within the architecture consisting of more exposed porous nanosheets and introducing a long band tail absorption. The well-designed morphology, band tail state, and oxygen doping effectively inhibit rapid band-to-band recombination of the photogenerated electrons and holes and facilitate subsequent separation. Accordingly, the HACN catalyst exhibits exceptional visible light (λ > 420 nm)-driven photoreduction for hydrogen production with a rate of 82.4 μmol h-1, which is 21.7 and 9.5 times higher than those of melem-derived carbon nitride and crystalline nanotube carbon nitride counterparts, respectively, and significantly surpasses those of most reported amorphous carbon nitrides. Our controlling of rearrangement of the in situ supramolecular self-assembly of melem oligomer using cyanuric acid directly instructs the development of highly efficient amorphous photocatalysts for converting solar energy into hydrogen fuel.
Collapse
Affiliation(s)
- Lin Lei
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yuxin Jia
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Lv
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- School of General Education, Xi'an Mingde Institute of Technology, Xi'an 710124, P. R. China
| | - Jinwei Miao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Zhu H, Zhao J, Duan L, Zhao G, Yu Z, Li J, Sun H, Meng Q. Low-Temperature Synthesis of Cyano-Rich Modified Surface-Alkalinized Heterojunctions with Directional Charge Transfer for Photocatalytic In Situ Generation and Consumption of Peroxides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6008-6024. [PMID: 38282284 DOI: 10.1021/acsami.3c18293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The synthesis of low-temperature poly(heptazine imide) (PHI) presents a significant challenge. In this context, we have developed a novel low-temperature synthesis strategy for PHI in this work. This strategy involves the introduction of Na+ ions, which etch and disrupt the conjugated structure of carbon nitride (CN) during assisted thermal condensation. This disruption leads to the partial decomposition of the heptazine ring structure, resulting in the formation of C≡N functionalities on the CN surface, which are enriched with hydroxyl groups and undergo cyano modification. The formation of heterojunctions between CN and ZnO, which facilitate charge transfer along an immobilization pathway, accelerated charge transfer processes and improved reactant adsorption as well as electron utilization efficiency. The resulting catalyst was employed for the room temperature, atmospheric pressure, and solvent-free photocatalytic selective oxidation of cumene (CM), achieving a cumene conversion rate of 28.7% and a remarkable selectivity of 92.0% toward the desired product, cumene hydroperoxide (CHP). Furthermore, this CHP induced oxidative reactions, as demonstrated by the successful oxidation of benzylamine to imine and the oxidation of sulfide to sulfoxide, both yielding high product yields. Additionally, the utilization of a continuous-flow device significantly reduces the reaction time required for these oxidation processes. This work not only introduces an innovative approach to environmentally friendly, sustainable, clean, and efficient PHI synthesis but also underscores the promising potential and advantages of carbon nitride-based photocatalysts in the realm of sustainable and green organic transformations.
Collapse
Affiliation(s)
- Hongfei Zhu
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liyuan Duan
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guofeng Zhao
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianing Li
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huinan Sun
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| |
Collapse
|
10
|
Deng Q, Li H, Hu W, Hou W. Stability and Crystallinity of Sodium Poly(Heptazine Imide) in Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202314213. [PMID: 37794843 DOI: 10.1002/anie.202314213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
Poly(heptazine imide) (PHI) salts, as crystalline carbon nitrides, exhibit high photocatalytic activity and are being extensively researched, but its photochemical instability has not drawn researchers' attention yet. Herein, sodium PHI (PHI-Na) ultrathin nanosheets with increased crystallinity, synthesized by enhancing contact of melamine with NaCl functioning as a structure-induction agent and hard template, exhibits improved photocatalytic hydrogen evolution activity, but low photochemical stability, owing to Na+ loss in the photocatalytic process, which, interestingly, can be enhanced by the common ion effect, e.g., addition of NaCl that is also able to remarkably increase the photoactivity with the apparent quantum yield at 420 nm reaching 41.5 %. This work aims at attracting research peers' attention to photochemical instability of PHI salts and provides a way to enhance their crystallinity.
Collapse
Affiliation(s)
- Quanhua Deng
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Stanley fertilizer (plain) Co., Ltd, Dezhou, Shandong, 250100, China
| | - Haiping Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Wenxuan Hu
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Wanguo Hou
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
11
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
12
|
Shenoy S, Chuaicham C, Sekar K, Sasaki K. Atomic-level investigation on significance of photoreduced Pt nanoparticles over g-C 3 N 4 /bimetallic oxide composites. CHEMSUSCHEM 2023; 16:e202300478. [PMID: 37337849 DOI: 10.1002/cssc.202300478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Designing an effective photocatalyst for solar-to-chemical fuel conversion presents significant challenges. Herein, g-C3 N4 nanotubes/CuCo2 O4 (CN-NT-CCO) composites decorated with platinum nanoparticles (Pt NPs) were successfully synthesized by chemical and photochemical reductions. The size distribution and location of Pt NPs on the surface of CN-NT-CCO composites were directly observed by TEM. Extended X-ray absorption fine structure (EXAFS) spectra of Pt L3-edge for the above composite confirmed establishment of Pt-N bonds at an atomic distance of 2.09 Å in the photoreduced Pt-bearing composite, which was shorter than in chemically reduced Pt-bearing composites. This proved the stronger interaction of photoreduced Pt NPs with the CN-NT-CCO composite than chemical reduced one. The H2 evolution performance of the photoreduced (PR) Pt@CN-NT-CCO (2079 μmol h-1 g-1 ) was greater than that of the chemically reduced (CR) Pt@CN-NT-CCO composite (1481 μmol h-1 g-1 ). The abundance of catalytically active sites and transfer of electrons from CN-NT to the Pt NPs to participate in the hydrogen evolution are the primary reasons for the improved performance. Furthermore, electrochemical investigations and band edge locations validated the presence of a Z-scheme heterojunction at the Pt@CN-NT-CCO interface. This work offers unique perspectives on the structure and interface design at the atomic level to fabricate high-performance heterojunction photocatalysts.
Collapse
Affiliation(s)
- Sulakshana Shenoy
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan
| |
Collapse
|
13
|
Wang Q, Zhang G, Xing W, Pan Z, Zheng D, Wang S, Hou Y, Wang X. Bottom-up Synthesis of Single-Crystalline Poly (Triazine Imide) Nanosheets for Photocatalytic Overall Water Splitting. Angew Chem Int Ed Engl 2023; 62:e202307930. [PMID: 37463869 DOI: 10.1002/anie.202307930] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Poly (triazine imide) (PTI/Li+ Cl- ), one of the crystalline versions of polymeric carbon nitrides, holds great promise for photocatalytic overall water splitting. In principle, the photocatalytic activity of PTI/Li+ Cl- is closely related to the morphology, which could be reasonably tailored by the modulation of the polycondensation process. Herein, we demonstrate that the hexagonal prisms of PTI/Li+ Cl- could be converted to hexagonal nanosheets by adjusting the binary eutectic salts from LiCl/KCl or NaCl/LiCl to ternary LiCl/KCl/NaCl. Results reveal that the extension of in-plane conjugation is preferred, when the polymerisation was performed in the presence of ternary eutectic salts. The hexagonal nanosheets bears longer lifetimes of charge carriers than that of hexagonal prisms due to lower intensity of structure defects and shorter hopping distance of charge carriers along the stacking direction of triazine nanosheets. The optimized hexagonal nanosheets exhibits a record apparent quantum yield value of 25 % (λ=365 nm) for solar hydrogen production by one-step excitation overall water splitting.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhiming Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Dandan Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
14
|
Liu Z, Ma J, Hong M, Sun R. Potassium and Sulfur Dual Sites on Highly Crystalline Carbon Nitride for Photocatalytic Biorefinery and CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhendong Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Min Hong
- Centre for Future Materials, University of Southern Queensland, Springfield Central Queensland 4300, Australia
| | - Runcang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Wang M, Xu S, Ge Z, Li Y, Zhou Z, Chen Y. All-Solid-State C 3N 4/Ni xP/Red Phosphorus Z-Scheme Heterostructure for Wide-Spectrum Photocatalytic Pure Water Splitting. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Menglong Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, P. R. China
| | - Shuai Xu
- Department of Chemical Engineering, School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an710064, P. R. China
| | - Zhichao Ge
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, P. R. China
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an710064, P. R. China
| | - Zhaohui Zhou
- Department of Chemical Engineering, School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an710064, P. R. China
| | - Yubin Chen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, P. R. China
- Integrated Energy Institute, Sichuan Digital Economy Industry Development Research Institute, Jinniu District, Chengdu610036, P. R. China
| |
Collapse
|