1
|
Suri D, Das S, Choudhary S, Venkanna G, Sharma B, Afroz MA, Tailor NK, Joshi R, Satapathi S, Tripathi K. Enigma of Sustainable CO 2 Conversion to Renewable Fuels and Chemicals Through Photocatalysis, Electrocatalysis, and Photoelectrocatalysis: Design Strategies and Atomic Level Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408981. [PMID: 39745113 DOI: 10.1002/smll.202408981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 02/26/2025]
Abstract
Growing global population, escalating energy consumption, and climate change threaten future energy security. Fossil fuel combustion, primarily coal, oil, and natural gas, exacerbates the greenhouse effect driving global warming through CO2 emissions. To address such issues, research is focused on converting CO2 into valuable fuels and chemicals, which aims to reduce noxious CO2 and simultaneously bridge the gap between energy demands and sustainable supply. CO2 reduction has primarily been accomplished through three methodologies: photocatalysis, electrocatalysis, and photo-electrocatalysis. Review initially elucidates fundamental principles and kinetics that govern CO2 reduction across all three approaches. Subsequently, we have discussed emerging concepts such as role of hot carriers and plasmon-mediated processes in photocatalysis. In electrocatalysis process, we thoroughly discuss advanced design strategies including alloying, ligand-modified surfaces, and molecular tuning to regulate the specific nanostructures of metal-based compounds. Furthermore, it investigates impacts of distinct nanostructures to identify structure property-performance correlations and their mechanisms. Similarly, enhancement of photo-electrocatalytic efficiency is investigated using defect-engineered nanostructures, heterojunctions, and plasmonic metals. Finally, the review outlines potential and intricacies associated with design strategies to drive industrial-scale CO2 reduction. In summary, this comprehensive review offers a thorough analysis of current advances, challenges, and future perspectives for CO2 reduction to valuable products.
Collapse
Affiliation(s)
- Diksha Suri
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Srimanta Das
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shivani Choudhary
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Guguloth Venkanna
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Bhavna Sharma
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Mohammad Adil Afroz
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Naveen K Tailor
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rakesh Joshi
- School of Materials Science & Engineering, University of New South Wales, Sydney, 2033, Australia
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Center for Sustainable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Komal Tripathi
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
2
|
Cui Y, Labidi A, Liang X, Huang X, Wang J, Li X, Dong Q, Zhang X, Othman SI, Allam AA, Bahnemann DW, Wang C. Pivotal Impact Factors in Photocatalytic Reduction of CO 2 to Value-Added C 1 and C 2 Products. CHEMSUSCHEM 2024; 17:e202400551. [PMID: 38618906 DOI: 10.1002/cssc.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Over the past decades, CO2 greenhouse emission has been considerably increased, causing global warming and climate change. Indeed, converting CO2 into valuable chemicals and fuels is a desired option to resolve issues caused by its continuous emission into the atmosphere. Nevertheless, CO2 conversion has been hampered by the ultrahigh dissociation energy of C=O bonds, which makes it thermodynamically and kinetically challenging. From this prospect, photocatalytic approaches appear promising for CO2 reduction in terms of their efficiency compared to other traditional technologies. Thus, many efforts have been made in the designing of photocatalysts with asymmetric sites and oxygen vacancies, which can break the charge distribution balance of CO2 molecule, reduce hydrogenation energy barrier and accelerate CO2 conversion into chemicals and fuels. Here, we review the recent advances in CO2 hydrogenation to C1 and C2 products utilizing photocatalysis processes. We also pin down the key factors or parameters influencing the generation of C2 products during CO2 hydrogenation. In addition, the current status of CO2 reduction is summarized, projecting the future direction for CO2 conversion by photocatalysis processes.
Collapse
Affiliation(s)
- Yongqian Cui
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xinxin Liang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xin Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Jingyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Ximing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Qibing Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xiaolong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Detlef W Bahnemann
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
- Institute for Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Photoactive Nanocomposite Materials, Saint Petersburg State University, Saint-Petersburg, 198504, Russia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| |
Collapse
|
3
|
Lin J, He J, Huang Q, Zhang Y, Li W, Hu J, Zhou G, Yang Z. Rich Sulfur Vacancies and Reduced Schottky Barrier Height Synergistically Enable Au/ZnIn 2S 4 with Enhanced Photocatalytic CO 2 Reduction into CO. Inorg Chem 2024; 63:13117-13126. [PMID: 38946108 DOI: 10.1021/acs.inorgchem.4c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Constructing the plasmonic metal/semiconductor heterostructure with a suitable Schottky barrier height (SBH) and the sufficiently reliable active sites is of importance to achieve highly efficient and selective photocatalytic CO2 reduction into hydrocarbon fuels. Herein, we report Au/sulfur vacancy-rich ZnIn2S4 (Au/VSR-ZIS) hierarchical photocatalysts, fabricated via in situ photodepositing Au nanoparticles (NPs) onto the nanosheet self-assembled ZnIn2S4 (ZIS) micrometer flowers (MFs) with rich sulfur vacancies (VS). Density functional theory (DFT) calculations confirm that for the Au/VSR-ZIS system, the Au NPs serve as the reaction sites for H2O oxidation, and the VSR-ZIS MFs serve as those for CO2 reduction. The rich VS in the Au/VSR-ZIS hybrid can reduce its SBH so as to boost more hot electrons in the Au NPs across its Schottky barrier and then inject into the conduction band (CB) of the VSR-ZIS MFs. In addition, VS can also act as the electron sink to trap the photogenerated electrons, retarding the recombination of photogenerated carriers. The two merits effectively enhance the photogenerated electron density in the surface of VSR-ZIS MFs, availing CO2 photoreduction. In addition, the introduction of rich VS in the Au/VSR-ZIS hybrid can offer more active sites, benefiting the CO2 adsorption and accelerating the desorption of CO* from the surface of the photocatalyst. Therefore, under visible light illumination with no sacrificial reagent, the optimum photocatalyst (Au/VSR-ZIS-0.4) presents the enhanced and selective CO2 photoreduction into CO (8.15 μmol g-1h-1 and near 100%), which are superior to those of most of ZIS-based and plasmon-based photocatalysts. The photocatalytic activity is about 40.0-fold as high as that of the Vs-poor-ZIS (VSP-ZIS) MFs. This work contributes a viable strategy for designing highly efficient plasmonic photocatalysts by using the synergism of the anion vacancies and the optimized SBH induced by them.
Collapse
Affiliation(s)
- Jie Lin
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jiale He
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Qingling Huang
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yu Zhang
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jianqiang Hu
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Guobing Zhou
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zhen Yang
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
4
|
Tudor M, Borlan R, Maniu D, Astilean S, de la Chapelle ML, Focsan M. Plasmon-enhanced photocatalysis: New horizons in carbon dioxide reduction technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172792. [PMID: 38688379 DOI: 10.1016/j.scitotenv.2024.172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The urgent need for transition to renewable energy is underscored by a nearly 50 % increase in atmospheric carbon dioxide levels over the past century. The combustion of fossil fuels for energy production, transportation, and industrial activities are the main contributors to carbon dioxide emissions in the anthroposphere. Present approaches to reducing carbon emissions are proving inefficient, thereby accentuating the relevance of carbon dioxide photocatalysis in combating climate change - one of the critical issues of public concern. This process uses sunlight to convert carbon dioxide into valuable products, e.g., clean fuels, effectively reducing the carbon footprint and offering a sustainable use of carbon dioxide. In this context, plasmonic nanoparticles such as gold, silver, and copper play a pivotal role due to their proficiency in absorbing a wide range of light spectra, thereby effectively generating the necessary electrons and holes for the degradation of pollutants and surpassing the capabilities of traditional semiconductor catalysts. This review meticulously examines the latest advancements in plasmon-based carbon dioxide photocatalysis, scrutinizing the methodologies, characterizations, and experimental outcomes. The critical evaluation extends to exploring adjustments in the dimensional and morphological aspects of plasmonic nanoparticles, complemented by the incorporation of stabilizing agents, which may offer additional benefits. Furthermore, the review includes a thorough analysis of production rates and quantum yields based on different plasmonic materials and nanoparticle shapes and sizes, enriching the ongoing discourse on effective solutions in the field. Thus, our work emphasizes the pivotal role of plasmon-based photocatalysts in reducing carbon dioxide, investigating both the merits and challenges associated with integrating this emerging technology into climate change mitigation efforts.
Collapse
Affiliation(s)
- Madalina Tudor
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Marc Lamy de la Chapelle
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; IMMM - UMR 6283 CNRS, Le Mans Université, Olivier Messiaen Avenue, 72085 Le Mans, France.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Dhakshinamoorthy A, Li Z, Yang S, Garcia H. Metal-organic framework heterojunctions for photocatalysis. Chem Soc Rev 2024; 53:3002-3035. [PMID: 38353930 DOI: 10.1039/d3cs00205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal-organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Hermenegildo Garcia
- Departamento de Química/Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
6
|
Fusco Z, Beck FJ. Advances in fundamentals and application of plasmon-assisted CO 2 photoreduction. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:387-417. [PMID: 39635649 PMCID: PMC11501834 DOI: 10.1515/nanoph-2023-0793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/23/2023] [Indexed: 12/07/2024]
Abstract
Artificial photosynthesis of hydrocarbons from carbon dioxide (CO2) has the potential to provide renewable fuels at the scale needed to meet global decarbonization targets. However, CO2 is a notoriously inert molecule and converting it to energy dense hydrocarbons is a complex, multistep process, which can proceed through several intermediates. Recently, the ability of plasmonic nanoparticles to steer the reaction down specific pathways and enhance both reaction rate and selectivity has garnered significant attention due to its potential for sustainable energy production and environmental mitigation. The plasmonic excitation of strong and confined optical near-fields, energetic hot carriers and localized heating can be harnessed to control or enhance chemical reaction pathways. However, despite many seminal contributions, the anticipated transformative impact of plasmonics in selective CO2 photocatalysis has yet to materialize in practical applications. This is due to the lack of a complete theoretical framework on the plasmonic action mechanisms, as well as the challenge of finding efficient materials with high scalability potential. In this review, we aim to provide a comprehensive and critical discussion on recent advancements in plasmon-enhanced CO2 photoreduction, highlighting emerging trends and challenges in this field. We delve into the fundamental principles of plasmonics, discussing the seminal works that led to ongoing debates on the reaction mechanism, and we introduce the most recent ab initio advances, which could help disentangle these effects. We then synthesize experimental advances and in situ measurements on plasmon CO2 photoreduction before concluding with our perspective and outlook on the field of plasmon-enhanced photocatalysis.
Collapse
Affiliation(s)
- Zelio Fusco
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT2601, Australia
| | - Fiona J. Beck
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT2601, Australia
| |
Collapse
|
7
|
Dall’Osto G, Marsili M, Vanzan M, Toffoli D, Stener M, Corni S, Coccia E. Peeking into the Femtosecond Hot-Carrier Dynamics Reveals Unexpected Mechanisms in Plasmonic Photocatalysis. J Am Chem Soc 2024; 146:2208-2218. [PMID: 38199967 PMCID: PMC10811681 DOI: 10.1021/jacs.3c12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Plasmonic-driven photocatalysis may lead to reaction selectivity that cannot be otherwise achieved. A fundamental role is played by hot carriers, i.e., electrons and holes generated upon plasmonic decay within the metal nanostructure interacting with molecular species. Understanding the elusive microscopic mechanism behind such selectivity is a key step in the rational design of hot-carrier reactions. To accomplish that, we present state-of-the-art multiscale simulations, going beyond density functional theory, of hot-carrier injections for the rate-determining step of a photocatalytic reaction. We focus on carbon dioxide reduction, for which it was experimentally shown that the presence of a rhodium nanocube under illumination leads to the selective production of methane against carbon monoxide. We show that selectivity is due to a (predominantly) direct hole injection from rhodium to the reaction intermediate CHO. Unexpectedly, such an injection does not promote the selective reaction path by favoring proper bond breaking but rather by promoting bonding of the proper molecular fragment to the surface.
Collapse
Affiliation(s)
- Giulia Dall’Osto
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Margherita Marsili
- Dipartimento
di Fisica e Astronomia “Augusto Righi”, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Mirko Vanzan
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
- Dipartimento
di Fisica, University of Milan, Via Giovanni Celoria 16, 20133 Milano, Italy
| | - Daniele Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mauro Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Stefano Corni
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
- Istituto
Nanoscienze-CNR, via
Campi 213/A, 41125 Modena, Italy
| | - Emanuele Coccia
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
8
|
Yang MM, Cao JM, Qi GD, Shen XY, Yan GY, Wang Y, Dong WW, Zhao J, Li DS, Zhang Q. Construction of Low-Cost Z-Scheme Heterojunction Cu 2O/PCN-250 Photocatalysts Simultaneously for the Enhanced Photoreduction of CO 2 to Alcohols and Photooxidation of Water. Inorg Chem 2023; 62:15963-15970. [PMID: 37725073 DOI: 10.1021/acs.inorgchem.3c02026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Solar-driven high-efficiency conversion of CO2 with water vapor into high-value-added alcohols is a promising approach for reducing CO2 emissions and achieving carbon neutrality. However, the rapid recombination of photogenerated carriers and low CO2 adsorption capacity of photocatalysts are usually the factors that limit their applicability. Herein, a series of low-cost Z-scheme heterostructures Cu2O/PCN-250-x are constructed by in situ growth of ultrasmall Cu2O nanoparticles on PCN-250. A systematic investigation revealed that there is a strong interaction between Cu2O nanoparticles and PCN-250. The resulting Cu2O/PCN-250-2 exhibits excellent photogenerated carrier separation efficiency and CO2 adsorption capacity, which dramatically promote the conversion of CO2 into alcohols. Notably, the total yield of 268 μmol gcat-1 for the production of CH3OH and CH3H2OH is superior to that of isolated PCN-250 and Cu2O. This study provides a new perspective for the design of a Cu2O nanoparticle/metal-organic framework Z-scheme heterojunction for the reduction of CO2 to alcohols with water vapor.
Collapse
Affiliation(s)
- Miao-Miao Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Jia-Min Cao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Guang-Dong Qi
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xian-Yu Shen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Guan-Yu Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Ye Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Wen-Wen Dong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Jun Zhao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
9
|
Wang K, He T. Plasmon photocatalytic CO 2 reduction reactions over Au particles on various substrates. NANOSCALE 2023. [PMID: 37455632 DOI: 10.1039/d3nr02543h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Surface plasmonic effects have been widely used in photocatalytic reactions like CO2 conversion in the past decades. However, owing to the significant controversy in the physical processes of plasmon photocatalytic reactions and difficulty in realizing CO2 reduction, the influence mechanism of the plasmon effect on the CO2 photoreduction is still under debate. In this study, Au particles deposited on various substrates were employed to acquire insights into the plasmon photocatalytic CO2 reduction, including SiO2, n-Si, p-Si, TiO2-SiO2, TiO2-n-Si, and TiO2-p-Si. It was found that the plasmon resonant enhancement (PRE) effect of Au-SiO2 caused by the Au plasmon was stronger than that of Au-TiO2-SiO2 and Au-n-Si (Au-p-Si) in the visible-light range, while it was weaker for Au-n-Si (Au-p-Si) samples than Au-TiO2-n-Si (Au-TiO2-p-Si). The simulation results agree with the experimental conclusions. The photocatalytic results indicated that the catalytic activity of Au-n-Si (Au-p-Si) samples was lower than that of Au-TiO2-n-Si (Au-TiO2-p-Si), and Au-SiO2 was lower than Au-TiO2-SiO2 and Au-n-Si (Au-p-Si) samples, suggesting that the direct electron transfer (DET) mechanism was dominant here compared with the PRE mechanism.
Collapse
Affiliation(s)
- Kai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Ou TH, Hu P, Liu Z, Wang Y, Hossain S, Meng D, Shi Y, Zhang S, Zhang B, Song B, Liu F, Cronin SB, Wu W. Plasmon-Enhanced Photocatalytic CO 2 Reduction for Higher-Order Hydrocarbon Generation Using Plasmonic Nano-Finger Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111753. [PMID: 37299656 DOI: 10.3390/nano13111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The carbon dioxide reduction reaction (CO2RR) is a promising method to both reduce greenhouse gas carbon dioxide (CO2) concentrations and provide an alternative to fossil fuel by converting water and CO2 into high-energy-density chemicals. Nevertheless, the CO2RR suffers from high chemical reaction barriers and low selectivity. Here we demonstrate that 4 nm gap plasmonic nano-finger arrays provide a reliable and repeatable plasmon-resonant photocatalyst for multiple-electrons reactions: the CO2RR to generate higher-order hydrocarbons. Electromagnetics simulation shows that hot spots with 10,000 light intensity enhancement can be achieved using nano-gap fingers under a resonant wavelength of 638 nm. From cryogenic 1H-NMR spectra, formic acid and acetic acid productions are observed with a nano-fingers array sample. After 1 h laser irradiation, we only observe the generation of formic acid in the liquid solution. While increasing the laser irradiation period, we observe both formic and acetic acid in the liquid solution. We also observe that laser irradiation at different wavelengths significantly affected the generation of formic acid and acetic acid. The ratio, 2.29, of the product concentration generated at the resonant wavelength 638 nm and the non-resonant wavelength 405 nm is close to the ratio, 4.93, of the generated hot electrons inside the TiO2 layer at different wavelengths from the electromagnetics simulation. This shows that product generation is related to the strength of localized electric fields.
Collapse
Affiliation(s)
- Tse-Hsien Ou
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Pan Hu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zerui Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yunxiang Wang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sushmit Hossain
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Deming Meng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yudi Shi
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sonia Zhang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Boxin Zhang
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Boxiang Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanxin Liu
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Wu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|