1
|
Smith RJ, Ghosh AN, Said S, van Haren FM, Laffey JG, Doig GS, Santamaria JD, Dixon B. A randomised, open-label trial of nebulised unfractionated heparin in patients mechanically ventilated for COVID-19. Anaesth Intensive Care 2025:310057X251322783. [PMID: 40148075 DOI: 10.1177/0310057x251322783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nebulised unfractionated heparin (UFH) might reduce time to ventilator separation in patients with COVID-19 by reducing virus infectivity, pulmonary coagulopathy, and inflammation, but clinical trial data are limited. Between 1 July 2020 and 23 March 2022, we conducted, at two hospitals in Victoria, Australia, a randomised, parallel-group, open-label, controlled trial of nebulised UFH. Eligible patients were aged 18 years or more, intubated, under intensive care unit management, had a PaO2 to FIO2 ratio of 300 or less, had acute opacities affecting at least one lung quadrant and attributed to COVID-19, and were polymerase chain reaction-positive for SARS-CoV-2 or had further testing planned. The target sample size was 270, however, the trial was stopped due to slow recruitment. There were 50 enrolments, all of whom were analysed. The median age was 55 (interquartile range (IQR) 46-64) years, 28 (56%) were males, and 46 (92%) had acute respiratory distress syndrome. Twenty-seven (54%) were randomised to nebulised heparin and 23 (46%) to standard care. Nebulised UFH was administered to the heparin group on 6 (IQR 4-10) days; median daily dose of 83 (IQR 75-88) kIU. The primary outcome, time to separation from invasive ventilation to day 28 adjusted for the competing risk of death, was not significantly different between groups but took numerically longer in the nebulised heparin group (12.0, standard deviation (SD) 10.4 days versus 7.4, SD 6.9 days; hazard ratio (HR) 0.56, 95% confidence interval (CI) 0.31 to 1.01, P = 0.052). One patient died by day 28 in each group, fewer than expected. Time to separation from invasive ventilation among survivors to day 28 occurred more quickly than expected in the standard care group and was, without correction for multiple comparisons, significantly slower in the heparin group (11.3, SD 10.0 days, n = 26 versus 6.4, SD 5.2 days, n = 22; HR 0.52, 95% CI 0.30 to 0.92, P = 0.024). Nebulised heparin did not reduce time to ventilator separation in intubated adult patients with COVID-19. The study is limited by the small sample size and potential for sampling bias. Further study is required.
Collapse
Affiliation(s)
- Roger J Smith
- Department of Critical Care Medicine, St Vincent's Hospital Melbourne, Fitzroy VIC, Australia
| | | | - Simone Said
- Intensive Care Unit, Northern Hospital, Epping, VIC, Australia
| | - Frank Mp van Haren
- Medical School, Australian National University, Canberra, ACT, Australia
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, Galway University Hospitals and University of Galway, Galway, Ireland
| | - Gordon S Doig
- Northern Clinical School Intensive Care Research Unit, University of Sydney, St Leonards, NSW, Australia
| | - John D Santamaria
- Department of Critical Care Medicine, St Vincent's Hospital Melbourne, Fitzroy VIC, Australia
| | - Barry Dixon
- Department of Critical Care Medicine, St Vincent's Hospital Melbourne, Fitzroy VIC, Australia
| |
Collapse
|
2
|
Waman VP, Ashford P, Lam SD, Sen N, Abbasian M, Woodridge L, Goldtzvik Y, Bordin N, Wu J, Sillitoe I, Orengo CA. Predicting human and viral protein variants affecting COVID-19 susceptibility and repurposing therapeutics. Sci Rep 2024; 14:14208. [PMID: 38902252 PMCID: PMC11190248 DOI: 10.1038/s41598-024-61541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
The COVID-19 disease is an ongoing global health concern. Although vaccination provides some protection, people are still susceptible to re-infection. Ostensibly, certain populations or clinical groups may be more vulnerable. Factors causing these differences are unclear and whilst socioeconomic and cultural differences are likely to be important, human genetic factors could influence susceptibility. Experimental studies indicate SARS-CoV-2 uses innate immune suppression as a strategy to speed-up entry and replication into the host cell. Therefore, it is necessary to understand the impact of variants in immunity-associated human proteins on susceptibility to COVID-19. In this work, we analysed missense coding variants in several SARS-CoV-2 proteins and their human protein interactors that could enhance binding affinity to SARS-CoV-2. We curated a dataset of 19 SARS-CoV-2: human protein 3D-complexes, from the experimentally determined structures in the Protein Data Bank and models built using AlphaFold2-multimer, and analysed the impact of missense variants occurring in the protein-protein interface region. We analysed 468 missense variants from human proteins and 212 variants from SARS-CoV-2 proteins and computationally predicted their impacts on binding affinities for the human viral protein complexes. We predicted a total of 26 affinity-enhancing variants from 13 human proteins implicated in increased binding affinity to SARS-CoV-2. These include key-immunity associated genes (TOMM70, ISG15, IFIH1, IFIT2, RPS3, PALS1, NUP98, AXL, ARF6, TRIMM, TRIM25) as well as important spike receptors (KREMEN1, AXL and ACE2). We report both common (e.g., Y13N in IFIH1) and rare variants in these proteins and discuss their likely structural and functional impact, using information on known and predicted functional sites. Potential mechanisms associated with immune suppression implicated by these variants are discussed. Occurrence of certain predicted affinity-enhancing variants should be monitored as they could lead to increased susceptibility and reduced immune response to SARS-CoV-2 infection in individuals/populations carrying them. Our analyses aid in understanding the potential impact of genetic variation in immunity-associated proteins on COVID-19 susceptibility and help guide drug-repurposing strategies.
Collapse
Affiliation(s)
- Vaishali P Waman
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Neeladri Sen
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Mahnaz Abbasian
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Laurel Woodridge
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Yonathan Goldtzvik
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Jiaxin Wu
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Christine A Orengo
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Zhou JJ, Jin C, Leang ZX, Chatelier J, Godsell J, Tsang S, Douglass JA, Yong MK, Slavin M, Bryant VL, Slade CA, Chan S. A single-center experience of COVID-19 infection in patients with primary immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100241. [PMID: 38585448 PMCID: PMC10997894 DOI: 10.1016/j.jacig.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/22/2023] [Accepted: 01/08/2024] [Indexed: 04/09/2024]
Abstract
Background Reported outcomes in patients with primary immunodeficiency (PID) infected by coronavirus disease 2019 (COVID-19) have been variable owing to a combination of viral strain heterogeneity, differences in patient populations and health systems, and local availability of vaccination and specific COVID-19 therapies. There are few reports on the experience of Australian patients with PID during the pandemic. Objectives In this retrospective study, we describe the baseline characteristics and short-term outcomes of patients with PID who were infected by COVID-19 and known to the Royal Melbourne Hospital, a major tertiary center in Victoria, Australia. Methods Between April 2021 and April 2022, a total of 31 of 138 patients with PID were affected by COVID-19. More than half of them had 3 vaccine doses at the time of infection (which at the time was considered being fully vaccinated) and received COVID-19-targeted treatment. Results All of the infected patients had ambulatory disease, with no cases of morbidity or mortality. In line with the current literature, the PID subtypes described did not appear to independently predict worse outcomes. Conclusions Some protective factors include this cohort's relatively younger average age and its high uptake of vaccination and COVID-19 therapies.
Collapse
Affiliation(s)
- Jessie J. Zhou
- Department of Clinical Immunology and Allergy, Melbourne, Australia
| | - Celina Jin
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Zhi Xiang Leang
- Department of Clinical Immunology and Allergy, Melbourne, Australia
| | - Josh Chatelier
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Jack Godsell
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Melbourne, Australia
| | - Sylvia Tsang
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Jo A. Douglass
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Michelle K. Yong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Monica Slavin
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Vanessa L. Bryant
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Charlotte A. Slade
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Samantha Chan
- Department of Clinical Immunology and Allergy, Melbourne, Australia
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Ameratunga R, Woon ST, Leung E, Lea E, Chan L, Mehrtens J, Longhurst HJ, Steele R, Lehnert K, Lindsay K. The autoimmune rheumatological presentation of Common Variable Immunodeficiency Disorders with an overview of genetic testing. Semin Arthritis Rheum 2024; 65:152387. [PMID: 38330740 DOI: 10.1016/j.semarthrit.2024.152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - James Mehrtens
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary J Longhurst
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Lindsay
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|
5
|
Eshetie S, Jullian P, Benyamin B, Lee SH. Host genetic determinants of COVID-19 susceptibility and severity: A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2466. [PMID: 37303119 DOI: 10.1002/rmv.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) associated with susceptibility and severity of coronavirus disease 2019 (COVID-19). However, identified SNPs are inconsistent across studies, and there is no compelling consensus that COVID-19 status is determined by genetic factors. Here, we conducted a systematic review and meta-analysis to determine the effect of genetic factors on COVID-19. A random-effect meta-analysis was performed to estimate pooled odds ratios (ORs) of SNP effects, and SNP-based heritability (SNP-h2 ) of COVID-19. The analyses were performed using meta-R package, and Stata version 17. The meta-analysis included a total of 96,817 COVID-19 cases and 6,414,916 negative controls. The meta-analysis showed that a cluster of highly correlated 9 SNPs (R2 > 0.9) at 3p21.31 gene locus covering LZTFL1 and SLC6A20 genes was significantly associated with COVID-19 severity, with a pooled OR of 1.8 [1.5-2.0]. Meanwhile, another 3 SNPs (rs2531743-G, rs2271616-T, and rs73062389-A) within the locus was associated with COVID-19 susceptibility, with pooled estimates of 0.95 [0.93-0.96], 1.23 [1.19-1.27] and 1.15 [1.13-1.17], respectively. Interestingly, SNPs associated with susceptibility and SNPs associated with severity in this locus are in linkage equilibrium (R2 < 0.026). The SNP-h2 on the liability scale for severity and susceptibility was estimated at 7.6% (Se = 3.2%) and 4.6% (Se = 1.5%), respectively. Genetic factors contribute to COVID-19 susceptibility and severity. In the 3p21.31 locus, SNPs that are associated with susceptibility are not in linkage disequilibrium (LD) with SNPs that are associated with severity, indicating within-locus heterogeneity.
Collapse
Affiliation(s)
- Setegn Eshetie
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - Pastor Jullian
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - S Hong Lee
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Solimando AG, Bittrich M, Shahini E, Albanese F, Fritz G, Krebs M. Determinants of COVID-19 Disease Severity-Lessons from Primary and Secondary Immune Disorders including Cancer. Int J Mol Sci 2023; 24:8746. [PMID: 37240091 PMCID: PMC10218128 DOI: 10.3390/ijms24108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
At the beginning of the COVID-19 pandemic, patients with primary and secondary immune disorders-including patients suffering from cancer-were generally regarded as a high-risk population in terms of COVID-19 disease severity and mortality. By now, scientific evidence indicates that there is substantial heterogeneity regarding the vulnerability towards COVID-19 in patients with immune disorders. In this review, we aimed to summarize the current knowledge about the effect of coexistent immune disorders on COVID-19 disease severity and vaccination response. In this context, we also regarded cancer as a secondary immune disorder. While patients with hematological malignancies displayed lower seroconversion rates after vaccination in some studies, a majority of cancer patients' risk factors for severe COVID-19 disease were either inherent (such as metastatic or progressive disease) or comparable to the general population (age, male gender and comorbidities such as kidney or liver disease). A deeper understanding is needed to better define patient subgroups at a higher risk for severe COVID-19 disease courses. At the same time, immune disorders as functional disease models offer further insights into the role of specific immune cells and cytokines when orchestrating the immune response towards SARS-CoV-2 infection. Longitudinal serological studies are urgently needed to determine the extent and the duration of SARS-CoV-2 immunity in the general population, as well as immune-compromised and oncological patients.
Collapse
Affiliation(s)
- Antonio G. Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area—(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Max Bittrich
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Federica Albanese
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area—(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Georg Fritz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy at the Immanuel Klinikum Bernau, Heart Center Brandenburg, 16321 Bernau, Germany
| | - Markus Krebs
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Urology and Paediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
7
|
Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals. Microorganisms 2023; 11:microorganisms11010125. [PMID: 36677416 PMCID: PMC9864768 DOI: 10.3390/microorganisms11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the long history of microorganism use, yeasts have been developed as hosts for producing biologically active compounds or for conventional fermentation. Since the introduction of genetic engineering, recombinant proteins have been designed and produced using yeast or bacterial cells. Yeasts have the unique property of expressing genes derived from both prokaryotes and eukaryotes. Saccharomyces cerevisiae is one of the well-studied yeasts in genetic engineering. Recently, molecular display technology, which involves a protein-producing system on the yeast cell surface, has been established. Using this technology, designed proteins can be displayed on the cell surface, and novel abilities are endowed to the host yeast strain. This review summarizes various molecular yeast display technologies and their principles and applications. Moreover, S. cerevisiae laboratory strains generated using molecular display technology for sustainable development are described. Each application of a molecular displayed yeast cell is also associated with the corresponding Sustainable Development Goals of the United Nations.
Collapse
|
8
|
Garmendia JV, García AH, De Sanctis CV, Hajdúch M, De Sanctis JB. Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Curr Issues Mol Biol 2022; 45:33-50. [PMID: 36661489 PMCID: PMC9857622 DOI: 10.3390/cimb45010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 causes the complex and heterogeneous illness known as COVID-19. The disease primarily affects the respiratory system but can quickly become systemic, harming multiple organs and leading to long-lasting sequelae in some patients. Most infected individuals are asymptomatic or present mild symptoms. Antibodies, complement, and immune cells can efficiently eliminate the virus. However, 20% of individuals develop severe respiratory illness and multiple organ failure. Virus replication has been described in several organs in patients who died from COVID-19, suggesting a compromised immune response. Immunodeficiency and autoimmunity are responsible for this impairment and facilitate viral escape. Mutations in IFN signal transduction and T cell activation are responsible for the inadequate response in young individuals. Autoantibodies are accountable for secondary immunodeficiency in patients with severe infection or prolonged COVID-19. Antibodies against cytokines (interferons α, γ and ω, IL1β, IL6, IL10, IL-17, IL21), chemokines, complement, nuclear proteins and DNA, anticardiolipin, and several extracellular proteins have been reported. The type and titer of autoantibodies depend on age and gender. Organ-specific autoantibodies have been described in prolonged COVID-19. Their role in the disease is under study. Autoimmunity and immunodeficiency should be screened as risk factors for severe or prolonged COVID-19.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Alexis Hipólito García
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
- Czech Institute of Advanced Technology in Research [Catrin], Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
- Czech Institute of Advanced Technology in Research [Catrin], Palacky University, 779 00 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Sodsai P, Ittiwut C, Ruenjaiman V, Ittiwut R, Jantarabenjakul W, Suphapeetiporn K, Shotelersuk V, Hirankarn N. TIGIT Monoallelic Nonsense Variant in Patient with Severe COVID-19 Infection, Thailand. Emerg Infect Dis 2022; 28:2350-2352. [PMID: 36191906 PMCID: PMC9622227 DOI: 10.3201/eid2811.220914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A heterozygous nonsense variant in the TIGIT gene was identified in a patient in Thailand who had severe COVID-19, resulting in lower TIGIT expression in T cells. The patient’s T cells produced higher levels of cytokines upon stimulation. This mutation causes less-controlled immune responses, which might contribute to COVID-19 severity.
Collapse
|