1
|
Zhou W, Hu J, Nie J. Identification of Hub Genes and Analysis of their Regulatory miRNAs in Patients with Thymoma Associated Myasthenia Gravis Based on TCGA Database. Microrna 2025; 14:49-58. [PMID: 39192657 DOI: 10.2174/0122115366299210240823062457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Myasthenia gravis is an autoimmune disease, and 30% of patients with thymoma often have myasthenia gravis. Patients with thymoma-associated MG (TAMG) have many different clinical presentations compared to non-MG thymoma (NMG), yet their gene expression differences remain unclear. OBJECTIVE In this study, we analyzed the Differentially Expressed Genes (DEGs) and analyzed their regulatory microRNAs (miRNAs) in TAMG, which will further clarify the possible pathogenesis of TAMG. METHODS DEGs were calculated using the RNA-sequencing data of TAMG and NMG downloaded from The Cancer Genome Atlas (TCGA) database. R software was then used to analyze the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs, while STRING was applied to build the protein-protein interaction (PPI) network and Cytoscape to identify and visualize the hub genes. Immune infiltration significances of hub genes were also explored by using the TIMER database and TCGA database. Upstream microRNAs (miRNAs) of the hub genes were predicted by online software. RESULTS We comparatively analyzed the gene expression differences between TAMG and NMG groups. A total of 977 DEGs were identified between the two groups (|log fold change (FC)| >2, adjusted P value <0.050), with 555 down-regulated genes and 422 up-regulated genes. Five top hub genes (CTNNB1, EGFR, SOX2, ERBB2, and EGF) were recognized in the PPI network. Analysis based on the TIMER and TCGA databases suggested that 5 hub genes were correlated with multiple immune cell infiltrations and immune checkpoint-related markers, such as PDCD1, CTLA-4, and CD274, in TAMG patients. Lastly, 5 miRNAs were identified to have the potential function of regulating the hub gene expression. CONCLUSION Our study identified 5 hub genes (CTNNB1, EGFR, SOX2, ERBB2, and EGF) and their 5 regulatory miRNAs in TAMG, and the hub genes were correlated with multiple immune cell infiltrations and immune checkpoint-related markers. Our findings could help partially clarify the pathophysiology of TAMG, which could be new potential targets for subsequent clinical immunotherapy.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jia Hu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jun Nie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Zhang Y, Wen Z, Chen M, Xia C, Cai F, Chu L. Nonlinear relationship between circulating natural killer cell count and 1-year relapse rates in myasthenia gravis: a retrospective cohort study. PeerJ 2024; 12:e18562. [PMID: 39655331 PMCID: PMC11627074 DOI: 10.7717/peerj.18562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Background The relapse rate in myasthenia gravis (MG) is high, and promising therapies have emerged; however, identifying potential predictive factors for relapse remains a challenge. This study aimed to explore the association between circulating natural killer (NK) cell levels and the risk of recurrence in MG. Methods This retrospective cohort study included 265 patients with MG whose data were included in the Neurology Department of the Affiliated Hospital of Guizhou Medical University database between March 2015 and March 2022. Data from electronic medical records were collected, which included the patients' circulating NK cell count (exposure variable) and demographic/clinical characteristics (covariates). The primary outcome was the 1-year MG recurrence rate. Results The study revealed a non-linear relationship between peripheral NK cell count and MG recurrence, with an inflection point at 5.38. Below this threshold, the risk of recurrence was low with higher NK cell counts (relative risk (RR): 0.23, 95% confidence interval (CI) [0.11-0.490]); above this threshold, no significant association was observed (RR: 1.43, 95% CI [0.62-3.34]). Furthermore, the NK cell proportion showed no significant linear or non-linear association with MG recurrence risk (RR: 0.84, 95% CI [0.57-1.2]). Conclusion This study provides epidemiological evidence of a potential association between peripheral NK cell count and MG recurrence risk, suggesting an immunoregulatory protective effect within a specific NK cell count range. These findings may inform more personalized MG treatment strategies, warranting further validation in larger and more diverse cohorts.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiguo Wen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Meiqiu Chen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Cong Xia
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Fang Cai
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Zhang Q, Han X, Bi Z, Yang M, Lin J, Li Z, Zhang M, Bu B. Exhausted signature and regulatory network of NK cells in myasthenia gravis. Front Immunol 2024; 15:1397916. [PMID: 39346912 PMCID: PMC11427316 DOI: 10.3389/fimmu.2024.1397916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction NK cells are dysfunctional in myasthenia gravis (MG), but the mechanism is unclear. This study aims to measure associations and underlying mechanisms between the NK cells and the development of MG. Methods Twenty healthy controls (HCs) and 53 MG patients who did not receive glucocorticoids and immunosuppressants were collected. According to the Myasthenia Gravis Foundation of America (MGFA) classification, MG patients were categorized into MGFA I group (n = 18) and MGFA II-IV group (n = 35). Flow cytometry, cell sorting, ELISA, mRNA-sequencing, RT-qPCR, western blot, and cell culture experiments were performed to evaluate the regulatory mechanism of exhausted NK cells. Results Peripheral NK cells in MGFA II-IV patients exhibit exhausted phenotypes than HCs, marked by the dramatic loss of total NK cells, CD56dimCD16- NK cells, elevated PD1 expression, reduced NKG2D expression, impaired cytotoxic activity (perforin, granzyme B, CD107a) and cytokine secretion (IFN-γ). Plasma IL-6 and IL-21 are elevated in MG patients and mainly derived from the aberrant expansion of monocytes and Tfh cells, respectively. IL-6/IL-21 cooperatively induced NK-cell exhausted signature via upregulating SOCS2 and inhibiting the phosphorylation of STAT5. SOCS2 siRNA and IL-2 supplement attenuated the IL-6/IL-21-mediated alteration of NK-cell phenotypes and function. Discussion Inhibition of IL-6/IL-21/SOCS2/STAT5 pathway and recovery of NK-cell ability to inhibit autoimmunity may be a new direction in the treatment of MG.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Han
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuajin Bi
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Lv Y, Yang Z, Hai L, Chen X, Wang J, Hu S, Zhao Y, Yuan H, Hu Z, Cui D, Xie J. Differential alterations of CXCR3, CXCR5 and CX3CR1 in patients with immune thrombocytopenia. Cytokine 2024; 181:156684. [PMID: 38936205 DOI: 10.1016/j.cyto.2024.156684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
As a versatile element for maintaining homeostasis, the chemokine system has been reported to be implicated in the pathogenesis of immune thrombocytopenia (ITP). However, research pertaining to chemokine receptors and related ligands in adult ITP is still limited. The states of several typical chemokine receptors and cognate ligands in the circulation were comparatively assessed through various methodologies. Multiple variable analyses of correlation matrixes were conducted to characterize the correlation signatures of various chemokine receptors or candidate ligands with platelet counts. Our data illustrated a significant decrease in relative CXCR3 expression and elevated plasma levels of CXCL4, 9-11, 13, and CCL3 chemokines in ITP patients with varied platelet counts. Flow cytometry assays revealed eminently diminished CXCR3 levels on T and B lymphocytes and increased CXCR5 on cytotoxic T cell (Tc) subsets in ITP patients with certain platelet counts. Meanwhile, circulating CX3CR1 levels were markedly higher on T cells with a concomitant increase in plasma CX3CL1 level in ITP patients, highlighting the importance of aberrant alterations of the CX3CR1-CX3CL1 axis in ITP pathogenesis. Spearman's correlation analyses revealed a strong positive association of peripheral CXCL4 mRNA level, and negative correlations of plasma CXCL4 concentration and certain chemokine receptors with platelet counts, which might serve as a potential biomarker of platelet destruction in ITP development. Overall, these results indicate that the differential expression patterns and distinct activation states of peripheral chemokine network, and the subsequent expansion of circulating CXCR5+ Tc cells and CX3CR1+ T cells, may be a hallmark during ITP progression, which ultimately contributes to thrombocytopenia in ITP patients.
Collapse
Affiliation(s)
- Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ziyin Yang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lei Hai
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyu Chen
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiayuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuhong Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huiming Yuan
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengjun Hu
- Department of Laboratory Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310060, China.
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
5
|
Kulma I, Na-Bangchang K, Carvallo Herrera A, Ndubuisi IT, Iwasaki M, Tomono H, Morita CT, Okamura H, Mukae H, Tanaka Y. Analysis of the Effector Functions of Vδ2 γδ T Cells and NK Cells against Cholangiocarcinoma Cells. Cells 2024; 13:1322. [PMID: 39195212 PMCID: PMC11352430 DOI: 10.3390/cells13161322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare disease characterized by malignant cells derived from the epithelial cells of the biliary duct system. Despite extensive treatments, the prognosis for CCA remains poor, emphasizing the critical need for the development of novel treatments. Considerable attention has been directed towards innate immune effector cells, which can recognize tumor cells independently of the major histocompatibility complex, laying the foundation for the development of off-the-shelf drugs. In this study, we cultured innate immune cells obtained from the peripheral blood of healthy adults and conducted a comparative analysis of the effector functions against CCA cell lines by Vδ2 γδ T cells and NK cells. This analysis was performed using standard short- and long-term cytotoxicity assays, as well as ELISA for IFN-γ. Vδ2 γδ T cells demonstrated cytotoxicity and IFN-γ production in response to CCA cells in a TCR-dependent manner, particularly in the presence of tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate, a bisphosphonate prodrug. In contrast, direct killing and antibody-dependent cellular cytotoxicity were relatively slow and weak. Conversely, NK cells displayed potent, direct cytotoxicity against CCA cells. In summary, both Vδ2 γδ T cells and NK cells show promise as innate immune effector cells for adoptive transfer therapy in the context of CCA.
Collapse
Affiliation(s)
- Inthuon Kulma
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12121, Thailand;
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12121, Thailand;
| | - Andrea Carvallo Herrera
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
| | - Ifeanyi Theodora Ndubuisi
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
| | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| | - Hiromi Tomono
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (H.T.); (H.M.)
| | - Craig T. Morita
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA;
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (H.T.); (H.M.)
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (I.K.); (A.C.H.); (I.T.N.)
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
6
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Huang X, An X, Gao X, Wang N, Liu J, Zhang Y, Qi G, Zhang C. Serum amyloid A facilitates expansion of CD4 + T cell and CD19 + B cell subsets implicated in the severity of myasthenia gravis patients. J Neurochem 2024; 168:224-237. [PMID: 38214332 DOI: 10.1111/jnc.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Serum amyloid A (SAA) is a clinically useful inflammatory marker involved in the pathogenesis of autoimmune diseases. This study aimed to explore the SAA levels in a cohort of patients with myasthenia gravis (MG) in relation to disease-related clinical parameters and myasthenic crisis (MC) and elucidate the effects of SAA on immune response. A total of 82 MG patients including 50 new-onset MG patients and 32 MC patients were enrolled in this study. Baseline data and laboratory parameters of all enrolled MG patients were routinely recorded through electronic medical systems. SAA levels were measured by enzyme-linked immunosorbent assay (ELISA) kit. CD4+ T and CD19+ B cell subsets were analyzed by flow cytometry. In vitro, human recombinant SAA (Apo-SAA) was applied to stimulate peripheral blood mononuclear cells (PBMCs) from MG patients to observe the effect on T and B cell differentiation. Our results indicated that SAA levels in new-onset MG patients were higher than those in controls and were positively correlated with QMG score, MGFA classification, plasmablast cells, IL-6, and IL-17 levels. Subgroup analysis revealed that SAA levels were increased in generalized MG (GMG) patients than in ocular MG (OMG), as well as elevated in late-onset MG (LOMG) than in early-onset MG (EOMG) and higher in MGFA III/IV compared with MGFA I/II. The ROC curve demonstrated that SAA showed good diagnostic value for MC, especially when combined with NLR. In vitro, Apo-SAA promoted the Th1 cells, Th17 cells, plasmablast cells, and plasma cells differentiation in MG PBMCs. The present findings suggested that SAA was increased in MG patients and promoted expansion of CD4+ T cell and CD19+ B cell subsets, which implicated in the severity of MG patients.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueting An
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Gao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ningning Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guoyan Qi
- Center of Treatment of Myasthenia Gravis Hebei Province, First Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Chao Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Jalalvand M, Beigmohammadi F, Soltani S, Ehsan S, Rajabkhah S, Madreseh E, Akhtari M, Jamshidi A, Farhadi E, Mahmoudi M, Nafissi S. The investigation of killer-cell immunoglobulin-like receptors (KIRs) and their HLA ligands in Iranian patients with myasthenia gravis. Clin Neurol Neurosurg 2024; 238:108171. [PMID: 38422742 DOI: 10.1016/j.clineuro.2024.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Myasthenia gravis (MG) is a disabling disease with the underlying pathophysiology of auto-antibodies attacking the postsynaptic acetylcholine receptors of neuromuscular junctions causing muscle weakness. Natural killer (NK) cells are innate immune cells that play an important regulative role in immune responses. The human killer-cell immunoglobulin-like receptors (KIRs) family is one of the receptors on NK cells that can either activate or inhibit NK cells. This study aimed to assess the possible role of KIR and their human leukocyte antigen (HLA) ligand genes susceptibility to MG in Iranian patients. METHOD One hundred and sixty-three patients with MG diagnosis based on the presence of clinical symptoms and laboratory tests and 400 healthy volunteers were studied. We used the polymerase chain reaction (PCR) technique for genotyping 15 KIRs and 5 HLA genes. RESULTS The results demonstrated that there was no significant difference in the frequency of KIR genes and inhibitory KIR genotypes between controls and patients. In MG patients, HLA-C1Asn80 was significantly less frequent than in matched controls. The frequency of HLA genotype number 7 was significantly lower in MG cases, compared to the controls. Analysis of activating KIR genotypes showed that genotype number 10 was significantly less frequent in MG cases than in matched controls. CONCLUSION Our results suggest that the presence HLA-C1Asn80 might play a protective role against the pathogenesis of MG. The significantly decreased prevalence of one activating KIR genotype and one of the HLA genotypes in MG cases suggest that these genotypes can reduce the risk of MG development. To specifically reveal the impact of KIR and HLA in MG, more studies are required.
Collapse
Affiliation(s)
- Mobina Jalalvand
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Ehsan
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahebeh Rajabkhah
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Madreseh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|