1
|
Powrózek T, Otieno MO, Maffeo D, Frullanti E, Martinez-Useros J. Blood circulating miRNAs as pancreatic cancer biomarkers: An evidence from pooled analysis and bioinformatics study. Int J Biol Macromol 2025:142469. [PMID: 40180095 DOI: 10.1016/j.ijbiomac.2025.142469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers, characterized by a poor prognosis. Currently, there are no screening programs for the early detection of PC, and existing diagnostic methods are primarily limited to high-risk individuals. Biomarkers such as CA19-9 have not significantly improved early diagnosis, making the identification of new potential biomarkers crucial for routine clinical practice. Among the candidate biomarkers, miRNAs have been most extensively studied due to their role in regulating gene expression (either as oncomiRs or tumor suppressor miRNAs) and their potential for minimally invasive analysis through liquid biopsy techniques. This review aims to summarize the current literature on blood-circulating miRNAs and their diagnostic value in PC detection, considering the context of CA19-9 and benign pancreatic diseases. The data from the collected studies were curated through both statistical and bioinformatics analyses to identify the most promising miRNAs with optimal diagnostic accuracy for PC detection and to assess their role in the molecular processes leading to tumor development.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland.
| | - Michael Ochieng' Otieno
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, Madrid, Spain
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, Madrid, Spain; Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
2
|
Sun S, Zhang F, Zhang J, Yu H, Hu Z, Xu X, Zhao X, Chen S, Zhang Y, Nian B, Lin Y, Li Z, Wu Z, Yu B, Wu X, Wang H, Hui X, Zhang D, Wang J. Small extracellular vesicle miRNAs as biomarkers for predicting antitumor efficacy in lung adenocarcinoma treated with chemotherapy and checkpoint blockade. Front Immunol 2025; 16:1573043. [PMID: 40230863 PMCID: PMC11994727 DOI: 10.3389/fimmu.2025.1573043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Checkpoint blockade combined with chemotherapy has become an important treatment option for lung cancer patients in clinical settings. However, biomarkers that effectively identify true responders remain lacking. We assessed the potential of plasma small extracellular vesicle (sEV)-derived microRNAs (miRNAs) as biomarkers for predicting and identifying responders to combined immunochemotherapy. A total of 29 patients with lung adenocarcinoma who received pembrolizumab combined with pemetrexed and carboplatin were enrolled. The efficacy evaluation revealed that 24 patients obtained durable clinical benefits from combined immunochemotherapy, and the rest experienced disease progression. Using unsupervised hierarchical clustering, 56 differentially expressed miRNAs (DEMs) were identified between responders and nonresponders. Efficacy prediction models incorporating a combination of sEV miRNAs were established and showed good performance (area under the curve (AUC) > 0.9). In addition, we found that miR-96-5p and miR-6815-5p were notably downregulated in the nonresponder group, while miR-99b-3p, miR-100-5p, miR-193a-5p, and miR-320d were upregulated. These findings were further confirmed by clinical imaging. sEV miRNAs derived from patients with lung cancer showed promise for identifying true responders to combined immunochemotherapy.
Collapse
Affiliation(s)
- Si Sun
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fuchuang Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Jiyang Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Hui Yu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhihuang Hu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoya Xu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Xinmin Zhao
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng Chen
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Yao Zhang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Baoning Nian
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Ying Lin
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhikuan Li
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Zhenhua Wu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Yu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghua Wu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijie Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohua Hui
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dadong Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Jialei Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
3
|
Kawai M, Fukuda A, Otomo R, Obata S, Minaga K, Asada M, Umemura A, Uenoyama Y, Hieda N, Morita T, Minami R, Marui S, Yamauchi Y, Nakai Y, Takada Y, Ikuta K, Yoshioka T, Mizukoshi K, Iwane K, Yamakawa G, Namikawa M, Sono M, Nagao M, Maruno T, Nakanishi Y, Hirai M, Kanda N, Shio S, Itani T, Fujii S, Kimura T, Matsumura K, Ohana M, Yazumi S, Kawanami C, Yamashita Y, Marusawa H, Watanabe T, Ito Y, Kudo M, Seno H. Early detection of pancreatic cancer by comprehensive serum miRNA sequencing with automated machine learning. Br J Cancer 2024; 131:1158-1168. [PMID: 39198617 PMCID: PMC11442445 DOI: 10.1038/s41416-024-02794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pancreatic cancer is often diagnosed at advanced stages, and early-stage diagnosis of pancreatic cancer is difficult because of nonspecific symptoms and lack of available biomarkers. METHODS We performed comprehensive serum miRNA sequencing of 212 pancreatic cancer patient samples from 14 hospitals and 213 non-cancerous healthy control samples. We randomly classified the pancreatic cancer and control samples into two cohorts: a training cohort (N = 185) and a validation cohort (N = 240). We created ensemble models that combined automated machine learning with 100 highly expressed miRNAs and their combination with CA19-9 and validated the performance of the models in the independent validation cohort. RESULTS The diagnostic model with the combination of the 100 highly expressed miRNAs and CA19-9 could discriminate pancreatic cancer from non-cancer healthy control with high accuracy (area under the curve (AUC), 0.99; sensitivity, 90%; specificity, 98%). We validated high diagnostic accuracy in an independent asymptomatic early-stage (stage 0-I) pancreatic cancer cohort (AUC:0.97; sensitivity, 67%; specificity, 98%). CONCLUSIONS We demonstrate that the 100 highly expressed miRNAs and their combination with CA19-9 could be biomarkers for the specific and early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan.
| | - Ryo Otomo
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Shunsuke Obata
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masanori Asada
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Uenoyama
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Nobuhiro Hieda
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Ryuki Minami
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yoshitaka Nakai
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Kozo Ikuta
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kosuke Iwane
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Naoki Kanda
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Seiji Shio
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Toshinao Itani
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Shigehiko Fujii
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Toshiyuki Kimura
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Kazuyoshi Matsumura
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Masaya Ohana
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Shujiro Yazumi
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Chiharu Kawanami
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Yukitaka Yamashita
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshito Ito
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Qin C, Li T, Lin C, Zhao B, Li Z, Zhao Y, Wang W. The systematic role of pancreatic cancer exosomes: distant communication, liquid biopsy and future therapy. Cancer Cell Int 2024; 24:264. [PMID: 39054529 PMCID: PMC11271018 DOI: 10.1186/s12935-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal diseases worldwide. Cancer-derived exosomes, benefiting from the protective role of the lipid membrane, exhibit remarkable stability in the circulatory system. These exosomes, released by tumor microenvironment, contain various biomolecules such as proteins, RNAs, and lipids that plays a pivotal role in mediating distant communication between the local pancreatic tumor and other organs or tissues. They facilitate the transfer of oncogenic factors to distant sites, contributing to the compromised body immune system, distant metastasis, diabetes, cachexia, and promoting a microenvironment conducive to tumor growth and metastasis in pancreatic cancer patients. Beyond their intrinsic roles, circulating exosomes in peripheral blood can be detected to facilitate accurate liquid biopsy. This approach offers a novel and promising method for the diagnosis and management of pancreatic cancer. Consequently, circulating exosomes are not only crucial mediators of systemic cell-cell communication during pancreatic cancer progression but also hold great potential as precise tools for pancreatic cancer management and treatment. Exosome-based liquid biopsy and therapy represent promising advancements in the diagnosis and treatment of pancreatic cancer. Exosomes can serve as drug delivery vehicles, enhancing the targeting and efficacy of anticancer treatments, modulating the immune system, and facilitating gene editing to suppress tumor growth. Ongoing research focuses on biomarker identification, drug delivery systems, and clinical trials to validate the safety and efficacy of exosome-based therapies, offering new possibilities for early diagnosis and precision treatment in pancreatic cancer. Leveraging the therapeutic potential of exosomes, including their ability to deliver targeted drugs and modulate immune responses, opens new avenues for innovative treatment strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Mok ETY, Chitty JL, Cox TR. miRNAs in pancreatic cancer progression and metastasis. Clin Exp Metastasis 2024; 41:163-186. [PMID: 38240887 PMCID: PMC11213741 DOI: 10.1007/s10585-023-10256-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2023] [Indexed: 06/30/2024]
Abstract
Small non-coding RNA or microRNA (miRNA) are critical regulators of eukaryotic cells. Dysregulation of miRNA expression and function has been linked to a variety of diseases including cancer. They play a complex role in cancers, having both tumour suppressor and promoter properties. In addition, a single miRNA can be involved in regulating several mRNAs or many miRNAs can regulate a single mRNA, therefore assessing these roles is essential to a better understanding in cancer initiation and development. Pancreatic cancer is a leading cause of cancer death worldwide, in part due to the lack of diagnostic tools and limited treatment options. The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is characterised by major genetic mutations that drive cancer initiation and progression. The regulation or interaction of miRNAs with these cancer driving mutations suggests a strong link between the two. Understanding this link between miRNA and PDAC progression may give rise to novel treatments or diagnostic tools. This review summarises the role of miRNAs in PDAC, the downstream signalling pathways that they play a role in, how these are being used and studied as therapeutic targets as well as prognostic/diagnostic tools to improve the clinical outcome of PDAC.
Collapse
Affiliation(s)
- Ellie T Y Mok
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica L Chitty
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Thomas R Cox
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 PMCID: PMC11774199 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
7
|
Benke M, Zeöld A, Kittel Á, Khamari D, Hritz I, Horváth M, Keczer B, Borka K, Szücs Á, Wiener Z. MiR-200b categorizes patients into pancreas cystic lesion subgroups with different malignant potential. Sci Rep 2023; 13:19820. [PMID: 37963969 PMCID: PMC10646105 DOI: 10.1038/s41598-023-47129-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Extracellular vesicles (EV) carry their cargo in a membrane protected form, however, their value in early diagnostics is not well known. Although pancreatic cysts are heterogeneous, they can be clustered into the larger groups of pseudocysts (PC), and serous and mucinous pancreatic cystic neoplasms (S-PCN and M-PCN, respectively). In contrast to PCs and S-PCNs, M-PCNs may progress to malignant pancreatic cancers. Since current diagnostic tools do not meet the criteria of high sensitivity and specificity, novel methods are urgently needed to differentiate M-PCNs from other cysts. We show that cyst fluid is a rich source of EVs that are positive and negative for the EV markers CD63 and CD81, respectively. Whereas we found no difference in the EV number when comparing M-PCN with other pancreatic cysts, our EV-based biomarker identification showed that EVs from M-PCNs had a higher level of miR-200b. We also prove that not only EV-derived, but also total cyst fluid miR-200b discriminates patients with M-PCN from other pancreatic cysts with a higher sensitivity and specificity compared to other diagnostic methods, providing the possibility for clinical applications. Our results show that measuring miR-200b in cyst fluid-derived EVs or from cyst fluid may be clinically important in categorizing patients.
Collapse
Affiliation(s)
- Márton Benke
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Anikó Zeöld
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell and Immunobiology, and HUN-REN-SU Translational Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
| | - István Hritz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Miklós Horváth
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Bánk Keczer
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Szücs
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary.
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Ungkulpasvich U, Hatakeyama H, Hirotsu T, di Luccio E. Pancreatic Cancer and Detection Methods. Biomedicines 2023; 11:2557. [PMID: 37760999 PMCID: PMC10526344 DOI: 10.3390/biomedicines11092557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The pancreas is a vital organ with exocrine and endocrine functions. Pancreatitis is an inflammation of the pancreas caused by alcohol consumption and gallstones. This condition can heighten the risk of pancreatic cancer (PC), a challenging disease with a high mortality rate. Genetic and epigenetic factors contribute significantly to PC development, along with other risk factors. Early detection is crucial for improving PC outcomes. Diagnostic methods, including imagining modalities and tissue biopsy, aid in the detection and analysis of PC. In contrast, liquid biopsy (LB) shows promise in early tumor detection by assessing biomarkers in bodily fluids. Understanding the function of the pancreas, associated diseases, risk factors, and available diagnostic methods is essential for effective management and early PC detection. The current clinical examination of PC is challenging due to its asymptomatic early stages and limitations of highly precise diagnostics. Screening is recommended for high-risk populations and individuals with potential benign tumors. Among various PC screening methods, the N-NOSE plus pancreas test stands out with its high AUC of 0.865. Compared to other commercial products, the N-NOSE plus pancreas test offers a cost-effective solution for early detection. However, additional diagnostic tests are required for confirmation. Further research, validation, and the development of non-invasive screening methods and standardized scoring systems are crucial to enhance PC detection and improve patient outcomes. This review outlines the context of pancreatic cancer and the challenges for early detection.
Collapse
Affiliation(s)
| | | | | | - Eric di Luccio
- Hirotsu Bioscience Inc., 22F The New Otani Garden Court, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (U.U.); (H.H.); (T.H.)
| |
Collapse
|
9
|
Senaratne M, Swami SS, Aye SL, Trivedi Y, Bolgarina Z, Desai HN, Mohammed L. Clinical Value of Circulating microRNAs in Diagnosis and Prognosis of Pancreatic Cancer: A Systematic Review. Cureus 2023; 15:e43931. [PMID: 37746488 PMCID: PMC10513118 DOI: 10.7759/cureus.43931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common cancers and has a high mortality rate due to high invasiveness and rapid progression. Microribonucleic acid (microRNA) plays an essential role in diagnosing PC in the early stages, which improves the five-year survival rate. This systematic review aims to highlight the different subtypes of serum and plasma microRNAs and panel-based assays of microRNAs and how they play a crucial role in the diagnosis and prognosis of PC as a high-sensitive and specific novel biomarker. Following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 guidelines, an in-depth search was performed by using regular keywords and major Medical Subject Heading (MeSH) keywords in PubMed (MEDLINE), PubMed Central, Google Scholar, Science Direct, and Cochrane Library for articles related to this topic and published between 2013 and 2023, up to April 18, 2023. Further eligibility criteria and quality assessment tools were employed to assess the risk of bias, and 13 articles were finalized to be used in this review. The chosen articles included five cross-sectional studies, six systematic reviews and meta-analyses, and two literature reviews. This review provides strong evidence of the usage of microRNA for early diagnosis. It can also be used to exclude differential diagnoses of other diseases, and its prognostic value for determining metastasis and therapeutic efficacy in PC patients. Also, combining microRNA panels with carbohydrate antigen 19.9 (CA19-9) improves the sensitivity and specificity of microRNA as a biomarker.
Collapse
Affiliation(s)
- Mithum Senaratne
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shivling S Swami
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Soe Lwin Aye
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Yash Trivedi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zoryana Bolgarina
- Obstetrics & Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Heet N Desai
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
10
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Sabbaghian A, Mussack V, Kirchner B, Bui MLU, Kalani MR, Pfaffl MW, Golalipour M. A panel of blood-derived miRNAs with a stable expression pattern as a potential pan-cancer detection signature. Front Mol Biosci 2022; 9:1030749. [PMID: 36589227 PMCID: PMC9798419 DOI: 10.3389/fmolb.2022.1030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: MicroRNAs have a significant role in the regulation of the transcriptome. Several miRNAs have been proposed as potential biomarkers in different malignancies. However, contradictory results have been reported on the capability of miRNA biomarkers in cancer detection. The human biological clock involves molecular mechanisms that regulate several genes over time. Therefore, the sampling time becomes one of the significant factors in gene expression studies. Method: In the present study, we have tried to find miRNAs with minimum fluctuation in expression levels at different time points that could be more accurate candidates as diagnostic biomarkers. The small RNA-seq raw data of ten healthy individuals across nine-time points were analyzed to identify miRNAs with stable expression. Results: We have found five oscillation patterns. The stable miRNAs were investigated in 779 small-RNA-seq datasets of eleven cancer types. All miRNAs with the highest differential expression were selected for further analysis. The selected miRNAs were explored for functional pathways. The predominantly enriched pathways were miRNA in cancer and the P53-signaling pathway. Finally, we have found seven miRNAs, including miR-142-3p, miR-199a-5p, miR-223-5p, let-7d-5p, miR-148b-3p, miR-340-5p, and miR-421. These miRNAs showed minimum fluctuation in healthy blood and were dysregulated in the blood of eleven cancer types. Conclusion: We have found a signature of seven stable miRNAs which dysregulate in several cancer types and may serve as potential pan-cancer biomarkers.
Collapse
Affiliation(s)
- Amir Sabbaghian
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Maria L. U. Bui
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Mohammad Reza Kalani
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
| | - Michael W. Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Masoud Golalipour
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
- Cellular and Molecular Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
12
|
Huang Q, Shen YJ, Hsueh CY, Zhang YF, Yuan XH, Zhou YJ, Li JY, Lin L, Wu CP, Hu CY. Plasma Extracellular Vesicles-Derived miR-99a-5p: A Potential Biomarker to Predict Early Head and Neck Squamous Cell Carcinoma. Pathol Oncol Res 2022; 28:1610699. [PMID: 36330052 PMCID: PMC9622758 DOI: 10.3389/pore.2022.1610699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022]
Abstract
Purpose: This study aimed to investigate the applicability of plasma extracellular vesicles (EVs) miR-99a-5p as a potential head and neck squamous cell carcinoma (HNSCC) diagnostic biomarker. Methods: The miRNA expression of HNSCC tissue and plasma EVs were profiled by small RNA sequencing. qRT-PCR was performed to detect miR-99a-5p expression in HNSCC (n = 93) and benign disease (n = 39) plasma EVs and formalin-fixed and paraffin-embedded (FFPE) tissue (n = 110). We constructed receiver-operating characteristic curves to investigate the diagnostic efficiency of plasma EVs miR-99a-5p. Results: Tumor tissue exhibited lower miR-99a-5p than para-tumor tissue. Patients with high miR-99a-5p expression exhibited significantly more p16 positive status. In contrast, HNSCC plasma EVs harbored more miR-99a-5p than the benign disease group. Plasma EVs miR-99a-5p distinguished HNSCC with area under the curve (AUC) of 0.7494 (95% CI: 0.6692–0.8296; p < 0.0001), with 61.54% sensitivity and 75.27% specificity, respectively. Furthermore, plasma EVs miR-99a-5p also distinguished early HNSCC with AUC of 0.7394 (95% CI: 0.6284–0.8504; p = 0.0002), with 79.07% sensitivity and 61.54% specificity, respectively. Conclusion: Plasma EVs miR-99a-5p is a potential biomarker for predicting early HNSCC.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Yu-Jie Shen
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Yi-Fan Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Xiao-Hui Yuan
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Yu-Juan Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Jiao-Yu Li
- Department of Pediatric, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lan Lin
- Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai, China
- *Correspondence: Lan Lin, ; Chun-Ping Wu, ; Chun-Yan Hu,
| | - Chun-Ping Wu
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
- *Correspondence: Lan Lin, ; Chun-Ping Wu, ; Chun-Yan Hu,
| | - Chun-Yan Hu
- Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai, China
- *Correspondence: Lan Lin, ; Chun-Ping Wu, ; Chun-Yan Hu,
| |
Collapse
|
13
|
Jia E, Ren N, Shi X, Zhang R, Yu H, Yu F, Qin S, Xue J. Extracellular vesicle biomarkers for pancreatic cancer diagnosis: a systematic review and meta-analysis. BMC Cancer 2022; 22:573. [PMID: 35606727 PMCID: PMC9125932 DOI: 10.1186/s12885-022-09463-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/28/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Extracellular vesicle (EV) biomarkers have promising diagnosis and screening capacity for several cancers, but the diagnostic value for pancreatic cancer (PC) is controversial. The aim of our study was to review the diagnostic performance of EV biomarkers for PC. METHODS We performed a systematic review of PubMed, Medline, and Web Of Science databases from inception to 18 Feb 2022. We identified studies reporting the diagnostic performance of EV biomarkers for PC and summarized the information of sensitivity, specificity, area under the curve (AUC), or receiver operator characteristic (ROC) curve) in according to a pre-designed data collection form. Pooled sensitivity and specificity was calculated using a random-effect model. RESULTS We identified 39 studies, including 2037 PC patients and 1632 noncancerous, seven of which were conducted independent validation tests. Seventeen studies emphasized on EV RNAs, sixteen on EV proteins, and sixteen on biomarker panels. MiR-10b, miR-21, and GPC1 were the most frequently reported RNA and protein for PC diagnosis. For individual RNAs and proteins, the pooled sensitivity and specificity were 79% (95% CI: 77-81%) and 87% (95% CI: 85-89%), 72% (95% CI: 69-74%) and 77% (95% CI: 74-80%), respectively. the pooled sensitivity and specificity of EV RNA combined with protein panels were 84% (95% CI: 81-86%) and 89% (95% CI: 86-91%), respectively. Surprisingly, for early stage (stage I and II) PC EV biomarkers showed excellent diagnostic performance with the sensitivity of 90% (95% CI: 87-93%) and the specificity of 94% (95% CI: 92-95%). Both in sensitivity and subgroup analyses, we did not observe notable difference in pooled sensitivity and specificity. Studies might be limited by the isolation and detection techniques of EVs to a certain extent. CONCLUSIONS EV biomarkers showed appealing diagnostic preference for PC, especially for early stage PC. Solving the deficiency of technologies of isolation and detection EVs has important implications for application these novel noninvasive biomarkers in clinical practice.
Collapse
Affiliation(s)
- Erna Jia
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Na Ren
- Department of Thoracic Surgery, The Third Hospital of Jilin University, No. 126, Xiantai Street, Jilin, Changchun, China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Rongkui Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Haixin Yu
- Department of General Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yu
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Shaoyou Qin
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Jinru Xue
- Department of Thoracic Surgery, The Third Hospital of Jilin University, No. 126, Xiantai Street, Jilin, Changchun, China.
| |
Collapse
|