1
|
Ye J, Zhu W, Cui Y, Zhang Q, Xiong Y, Jin L, Wang A, Lin M, Dong H, Liang G, Hu X, Luo W. Compound J27 alleviates high-fat diet-induced metabolic dysfunction-associated steatotic liver disease by targeting JNK. Int Immunopharmacol 2025; 154:114570. [PMID: 40188525 DOI: 10.1016/j.intimp.2025.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most characteristic form of liver diseases. As the member of MAPK family, the cJun-N-terminal-kinase (JNK) plays a crucial role in the pathogenesis of MASLD. A small molecule compound, J27, has demonstrated strong anti-inflammatory effects by inhibiting JNK phosphorylation, but its therapeutic potential in MASLD remains unclear. METHODS To evaluate the effect of J27, we used a high-fat diet (HFD)-induced MASLD mouse model with or without J27 treatment. Pathological changes were assessed through tissue staining, biochemical analysis, and other assays. In vitro, J27's effects were tested on macrophages, hepatocytes, and co-culture systems under palmitic acid stimulation. RESULTS J27 significantly reduced HFD-induced hepatic steatosis, liver injury, insulin resistance, and inflammatory responses by targeting JNK both in vivo and in vitro. On one hand, J27 blocked JNK activation, thereby improving insulin signaling and alleviating metabolic dysfunction in hepatocytes. On the other hand, J27 inhibited the inflammatory response in macrophages by disrupting the JNK/NF-κB axis, which, through cell-cell communication, further reduced hepatocyte injury. CONCLUSIONS J27, as a potent JNK inhibitor, markedly reduced HFD-induced MASLD, suggesting it as a promising therapeutic candidate for this disease.
Collapse
Affiliation(s)
- Jiaxi Ye
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Weiwei Zhu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China
| | - Yaqian Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Qianhui Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yongqiang Xiong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Ao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Mengsha Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hui Dong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Guang Liang
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China.
| | - Xiang Hu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Wu Luo
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Hui L, Chen X, Huang M, Jiang Y, Liu T. TANK-Binding Kinase 1 in the Pathogenesis and Treatment of Inflammation-Related Diseases. Int J Mol Sci 2025; 26:1941. [PMID: 40076567 PMCID: PMC11900955 DOI: 10.3390/ijms26051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key signaling kinase involved in innate immune and inflammatory responses. TBK1 drives immune cells to participate in the inflammatory response by activating the NF-κB and interferon regulatory factor signaling pathways in immune cells, promoting the expression of pro-inflammatory genes, and regulating immune cell function. Thus, it plays a crucial role in initiating a signaling cascade that establishes an inflammatory environment. In inflammation-related diseases, TBK1 acts as a bridge linking inflammation to immunity, metabolism, or tumorigenesis, playing an important role in the pathogenesis of immune-mediated inflammatory diseases, metabolic, inflammatory syndromes, and inflammation-associated cancers by regulating the activation of inflammatory pathways and the production of inflammatory cytokines in cells. In this review, we focused on the mechanisms of TBK1 in immune cells and inflammatory-related diseases, providing new insights for further studies targeting TBK1 as a potential treatment for inflammation-related diseases. Thus, optimizing and investigating highly selective cell-specific TBK1 inhibitors is important for their application in these diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Xiaolin Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Mengke Huang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Jin L, Cui Y, Zhang Q, Xiong Y, Zheng X, Ye J, Zhang A, Xiao Z, Zhuang Z, Liang G, Hu X, Luo W, Zhu W. The natural product-derived JM-9 alleviates high-fat diet-induced fatty liver in mice by targeting MD2. Int Immunopharmacol 2025; 148:114053. [PMID: 39827672 DOI: 10.1016/j.intimp.2025.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), is gradually emerging as one of the most prevalent liver diseases worldwide. Previous research demonstrated the involvement of myeloid differentiation factor 2 (MD2), a co-receptor of TLR4, as a key mediator in MASLD pathogenesis. The current study identifies JM-9 as a novel MD2 inhibitor, and focuses on evaluating its potential therapeutic effects in mitigating MASLD progression. METHODS Drug affinity responsive target stability (DARTS) assay and surface plasmon resonance assay were utilized to evaluate the MD2-targeting specificity of JM-9. In vitro, hepatocytes and macrophages were stimulated with palmitic acid (PA) followed by JM-9 treatment. In vivo, a high-fat diet (HFD)-induced MASLD model was established and subjected to JM-9 administration during the last 2 months. RESULTS JM-9 directly bound the Phe76 residue of MD2 to disrupt the PA-induced MD2/TLR4 complex formation, thus further restoring AMPK phosphorylation and inhibiting NF-κB activation to reducing lipid accumulation and inflammation, respectively. In the HFD-mediated MASLD mouse model, JM-9 alleviated the binding between MD2 and TLR4 in the liver and counteracted hepatic TBK1 and p65 activation and AMPK suppression, thereby mitigating liver inflammation, steatosis, and fibrosis. CONCLUSION JM-9, as a novel MD2 inhibitor, holds potential as a viable treatment option for MASLD by playing a dual role in regulating both lipid metabolism and inflammation response.
Collapse
Affiliation(s)
- Leiming Jin
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Yaqian Cui
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Qianhui Zhang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Yongqiang Xiong
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; Department of Endocrinology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangsheng Zheng
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; Department of Endocrinology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaxi Ye
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Anqi Zhang
- Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xiang Hu
- Department of Endocrinology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; Department of Endocrinology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Weiwei Zhu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China.
| |
Collapse
|
4
|
Jin L, Zhu W, Hu X, Ye L, Lou S, Zhang Q, Wang M, Ye B, Min J, Wang Y, Huang L, Luo W, Liang G. USP25 directly interacts with and deubiquitinates PPARα to increase PPARα stability in hepatocytes and attenuate high-fat diet-induced MASLD in mice. Cell Death Differ 2025:10.1038/s41418-025-01444-4. [PMID: 39827322 DOI: 10.1038/s41418-025-01444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/08/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Recent studies have implicated altered ubiquitination/de-ubiquitination pathway in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we investigated the potential role of a deubiquitinase, ubiquitin-specific peptidase 25 (USP25), in MASLD. Analysis of mRNA profiling data showed that both human and mouse MASLD are associated with reduced expression of USP25 in hepatocytes. Usp25 deficiency exacerbated HFD-induced liver lipid accumulation and MASLD in mice. Rescue experiments with USP25 induction in hepatocytes protected mice against HFD-induced MASLD. Through comprehensive transcriptome sequence and pulldown-LC-MS/MS analysis, we identified that peroxisome proliferator-activated receptor α (PPARα) is involved in USP25's protective actions and may be the substrate protein of USP25. Cell-based experiments show that USP25 interacts with PPARα directly via its USP domain and the histidine at position 608 of USP25 exerts deubiquitination to increase protein stability by removing the K48 ubiquitin chain at PPARα's lysine at position 429. USP25 reduces palmitate (PA)-induced lipid accumulation in hepatocytes via increasing PPARα. Finally, we show that the protective effects of Usp25 induction are nullified in Ppara-deficient mice with HFD. In summary, this study presents a new USP25-PPARα axis in hepatocytes and highlights a novel function of USP25 in MASLD, suggesting that it may be targeted to combat the disease.
Collapse
Affiliation(s)
- Leiming Jin
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weiwei Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuaijie Lou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianhui Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bozhi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Julian Min
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Yi Wang
- The Affiliated Xiangshan Hospital, Wenzhou Medical University, Xiangshan, Zhejiang, 315799, China
- School of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310000, China
| | - Lijiang Huang
- The Affiliated Xiangshan Hospital, Wenzhou Medical University, Xiangshan, Zhejiang, 315799, China.
| | - Wu Luo
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
5
|
Jiang X, Geng H, Zhang C, Zhu Y, Zhu M, Feng D, Wang D, Yao J, Deng L. Circadian Rhythm Enhances mTORC1/AMPK Pathway-Mediated Milk Fat Synthesis in Dairy Cows via the Microbial Metabolite Acetic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28178-28193. [PMID: 39630106 DOI: 10.1021/acs.jafc.4c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Livestock may respond differently to circadian rhythms, leading to differences in the composition of the animal products. Nevertheless, the circadian effects on rumen microorganisms and animal products are poorly understood. In the study, it was found that dairy cows exhibited increased milk fat levels, decreased acetic acid concentrations in the rumen fluid, and elevated acetic acid levels in the blood during the night compared to those of the day. Correlational analyses suggested a high association between Succiniclasticum, Lactobacillus, Prevotellacene NK3B31_group, Muribaculaceae_unclassified, etc., which were significantly enriched in rumen fluid at night, and milk fat levels. The differential metabolite Vitamin B6, significantly elevated at night, promoted the translocation of acetic acid into the circulation by increasing the level of rumen epithelial MCT1 protein expression. In addition, we found that both acetic acid treatment time and dose modulated the expression of lipid metabolism transcription factors (PPARγ, PPARα, and SREBP1c) and downstream genes (FASN, SCD1, ACCα, and CPT1A). Additionally, the mTORC1 and AMPK pathways were responsible for the effects of acetic acid on transcription factors and genes involved in lipid metabolism. Differences in rumen microbial taxa were observed between the day and night. Microbial metabolite (acetic acid) was found to be absorbed into the bloodstream and entered the mammary gland at night at a significantly elevated level. This regulation impacted the expression of lipid metabolism-related transcription factors (PPARγ, PPARα, and SREBP1c), as well as downstream genes through the mTORC1 and AMPK signaling pathways, ultimately affecting milk fat synthesis. These findings provide a new perspective for the microbial regulation of milk synthesis.
Collapse
Affiliation(s)
- Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miaomiao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingping Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
6
|
Ni Q, Lin J, Huang W, Yang L, Li R, Tu T, He G, Gao Y, Sun X, Kong X, Zhu X. Kehuang capsule inhibits MAPK and AKT signaling pathways to mitigate CCl 4-induced acute liver injury. LIVER RESEARCH 2024; 8:269-281. [PMID: 39958915 PMCID: PMC11771260 DOI: 10.1016/j.livres.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 11/28/2024] [Indexed: 02/18/2025]
Abstract
Background and aims Kehuang (KH) capsule is an herbal medical product approved for the treatment of liver diseases, including liver injury, in China. However, the mechanism is still unclear. This study aimed to elucidate the protective effects of KH capsule against carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in a murine model. Methods Mice were randomly divided into control, model (CCl4), CCl4+KH_Low and CCl4+KH_High group. Liver enzyme levels and histological changes were assessed to evaluate liver injury. Oxidative stress markers and inflammatory cell infiltration in liver tissues were measured. Additionally, network pharmacology was employed to explore the potential mechanisms of KH capsule. Results KH capsule significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, as well as the necrotic area in liver tissue. KH capsule also decreased the infiltration of macrophages and neutrophils, thereby inhibiting the expression of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β). Furthermore, KH capsule decreased liver malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) activity. The number of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)-positive cells in liver tissue was also reduced. The expression of nuclear factor erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins was significantly elevated, while the protein expression of cytochrome P450 2E1 (CYP2E1) was significantly reduced. Mass spectrometry identified genistein, galangin, wogonin, skullcapflavone II, and hispidulin as potential active ingredients of KH capsule. Network pharmacology analysis revealed enrichment in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathways. Western blot analysis confirmed that KH capsule suppressed AKT, extracellular signal-regulated kinase (ERK), and p38 signaling. Conclusions These findings suggest that KH capsule could exert protective effects against CCl4-induced ALI, with the inhibition of MAPK and PI3K-AKT signaling pathways playing a crucial role in its mechanism of action.
Collapse
Affiliation(s)
- Qinyu Ni
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weifan Huang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ran Li
- Kexing Biopharm Co., Ltd, Jinan, Shandong, China
| | - Tianzhi Tu
- Kexing Biopharm Co., Ltd, Jinan, Shandong, China
| | - Guangfu He
- Kexing Biopharm Co., Ltd, Jinan, Shandong, China
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuehua Sun
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Zhu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Feng X, Zhang R, Yang Z, Zhang K, Xing J. Mechanism of Metabolic Dysfunction-associated Steatotic Liver Disease: Important role of lipid metabolism. J Clin Transl Hepatol 2024; 12:815-826. [PMID: 39280069 PMCID: PMC11393839 DOI: 10.14218/jcth.2024.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, has a high global prevalence and can progress to metabolic dysfunction-associated steatohepatitis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of MASLD is primarily driven by disturbances in hepatic lipid metabolism, involving six key processes: increased hepatic fatty acid uptake, enhanced fatty acid synthesis, reduced oxidative degradation of fatty acids, increased cholesterol uptake, elevated cholesterol synthesis, and increased bile acid synthesis. Consequently, maintaining hepatic lipid metabolic homeostasis is essential for effective MASLD management. Numerous novel molecules and Chinese proprietary medicines have demonstrated promising therapeutic potential in treating MASLD, primarily by inhibiting lipid synthesis and promoting lipid oxidation. In this review, we summarized recent research on MASLD, elucidated the molecular mechanisms by which lipid metabolism disorders contribute to MASLD pathogenesis, and discussed various lipid metabolism-targeted therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Xiaoxi Feng
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rutong Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenye Yang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Xing
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
Xu J, Jia W, Zhang G, Liu L, Wang L, Wu D, Tao J, Yue H, Zhang D, Zhao X. Extract of Silphium perfoliatum L. improve lipid accumulation in NAFLD mice by regulating AMPK/FXR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118054. [PMID: 38484950 DOI: 10.1016/j.jep.2024.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Globally, the incidence rate and number of patients with nonalcoholic fatty liver disease are increasing, which has become one of the greatest threats to human health. However, there is still no effective therapy and medicine so far. Silphium perfoliatum L. is a perennial herb native to North America, which is used to improve physical fitness and treat liver and spleen related diseases in the traditional medicinal herbs of Indian tribes. This herb is rich in chlorogenic acids, which have the functions of reducing blood lipids, losing weight and protecting liver. However, the effect of these compounds on nonalcoholic fatty liver disease remains unclear. AIM OF THE STUDY Clarify the therapeutic effects and mechanism of the extract (CY-10) rich in chlorogenic acid and its analogues from Silphium perfoliatum L. on non-alcoholic fatty liver disease, and to determine the active compounds. MATERIALS AND METHODS A free fatty acid-induced steatosis model of HepG2 cells was established to evaluate the in vitro activity of CY-10 in promoting lipid metabolism. Further, a high-fat diet-induced NAFLD model in C57BL/6 mice was established to detect the effects of CY-10 on various physiological and biochemical indexes in mice, and to elucidate the in vivo effects of the extract on regulating lipid metabolism, anti-inflammation and hepatoprotection, and nontarget lipid metabolomics was performed to analyze differential metabolites of fatty acids in the liver. Subsequently, western blotting and immunohistochemistry were used to analyze the target of the extract and elucidate its mechanism of action. Finally, the active compounds in CY-10 were elucidated through in vitro activity screening. RESULTS The results indicated that CY-10 significantly attenuated lipid droplet deposition in HepG2 cells. The results of in vivo experiments showed that CY-10 significantly reduce HFD-induced mouse body weight and organ index, improve biochemical indexes, oxidation levels and inflammatory responses in the liver and serum, thereby protecting the liver tissue. It can promote the metabolism of unsaturated fatty acids in the liver and reduce the generation of saturated fatty acids. Furthermore, it is clarified that CY-10 can promote lipid metabolism balance by regulating AMPK/FXR/SREPB-1c/PPAR-γ signal pathway. Ultimately, the main active compound was proved to be cryptochlorogenic acid, which has a strong promoting effect on the metabolism of fatty acids in cells. Impressively, the activities of CY-10 and cryptochlorogenic acid were stronger than simvastatin in vitro and in vivo. CONCLUSION For the first time, it is clarified that the extract rich in chlorogenic acids and its analogues in Silphium perfoliatum L. have good therapeutic effects on non-alcoholic fatty liver disease. It is confirmed that cryptochlorogenic acid is the main active compound and has good potential for medicine.
Collapse
Affiliation(s)
- Jiyu Xu
- College of Ecological Environmental Engineering, Qinghai University, China.
| | - Wenjing Jia
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China; University of Chinese Academy of Sciences, China.
| | - Guoying Zhang
- College of Ecological Environmental Engineering, Qinghai University, China.
| | - Liying Liu
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China; University of Chinese Academy of Sciences, China.
| | - Luya Wang
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China; University of Chinese Academy of Sciences, China.
| | - Di Wu
- College of Ecological Environmental Engineering, Qinghai University, China.
| | - Jihong Tao
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China.
| | - Huilan Yue
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China.
| | - Dejun Zhang
- College of Ecological Environmental Engineering, Qinghai University, China.
| | - Xiaohui Zhao
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, 810008, China.
| |
Collapse
|
9
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
10
|
Liu X, Fang Y, Qian C, Chen J, Luo W, Zuo W, Lin J, Xie L, Liang G, Huang L, Wang Y. CARD9 deficiency aggravated nonalcoholic steatohepatitis in mice through increasing inflammatory response. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166893. [PMID: 37751783 DOI: 10.1016/j.bbadis.2023.166893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Nonalcoholic steatohepatitis (NASH), a subtype of nonalcoholic fatty liver disease (NAFLD), is the leading cause of liver-related morbidity worldwide. Caspase recruitment domain family member 9 (CARD9), a myeloid cell-specific signaling protein, belongs to the CARD protein family. However, its role in NASH is unknown. Therefore, this study aimed to investigate the role of CARD9 in the development of NASH. NASH models were established using CARD9-knockout and wild-type mice. They were either fed a methionine/choline deficient (MCD) diet for 6 weeks or a high-fat high-cholesterol (HFHC) diet for 16 weeks. Liver fibrosis model was also developed using CCl4. CARD9 deficiency accelerated steatohepatitis development in MCD or HFHC diet-fed mice, accompanied by an upregulation of fibrosis, adipogenesis, and proinflammatory genes. CARD9 deficiency was found to exacerbate CCl4-induced liver fibrosis. In vitro studies demonstrated that CARD9 deficiency induced the expression of S100a8/a9 through Toll-like receptor in Kupffer cells treated with palmitate. This led to an increased expression of proinflammatory, fibrosis, and lipid metabolism-related genes in NASH progression. These results highlight the role of CARD9 in the development of NASH and provide new insights into the therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Xin Liu
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenchen Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Zuo
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Jianjun Lin
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Longteng Xie
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China.
| | - Yi Wang
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
11
|
Wen J, Feng Y, Xue L, Yuan S, Chen Q, Luo A, Wang S, Zhang J. High-fat diet-induced L-saccharopine accumulation inhibits estradiol synthesis and damages oocyte quality by disturbing mitochondrial homeostasis. Gut Microbes 2024; 16:2412381. [PMID: 39410876 PMCID: PMC11485700 DOI: 10.1080/19490976.2024.2412381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
High-fat diet (HFD) has been linked to female infertility. However, the specific age at which HFD impacts ovarian function and the underlying mechanisms remain poorly understood. Here, we administered a HFD to female mice at various developmental stages: pre-puberty (4 weeks old), post-puberty (6 weeks old), young adult (9 weeks old), and middle age (32 weeks old). Our observations indicated that ovarian function was most significantly compromised when HFD was initiated at post-puberty. Consequently, post-puberty mice were chosen for further investigation. Through transplantation of fecal bacteria from the HFD mice to the mice on a normal diet, we confirmed that gut microbiota dysbiosis contributed to HFD-induced deteriorated fertility and disrupted estradiol synthesis. Utilizing untargeted and targeted metabolomics analyses, we identified L-saccharopine as a key metabolite, which was enriched in the feces, serum, and ovaries of HFD and HFD-FMT mice. Subsequent in vitro and in vivo experiments demonstrated that L-saccharopine disrupted mitochondrial homeostasis by impeding AMPKα/MFF-mediated mitochondrial fission. This disruption ultimately hindered estradiol synthesis and compromised oocyte quality. AICAR, an activator of AMPKα, ameliorated L-saccharopine induced mitochondrial damage in granulosa cells and oocytes, thereby enhancing E2 synthesis and improving oocyte quality. Collectively, our findings indicate that the accumulation of L-saccharopine may play a pivotal role in mediating HFD-induced ovarian dysfunction. This highlights the potential therapeutic benefits of targeting the gut microbiota-metabolite-ovary axis to address HFD-induced ovarian dysfunction.
Collapse
Affiliation(s)
- Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
12
|
Wang M, Zhang Q, Lou S, Jin L, Wu G, Wu W, Tang Q, Wang Y, Long X, Huang P, Luo W, Liang G. Inhibition of MD2 by natural product-drived JM-9 attenuates renal inflammation and diabetic nephropathy in mice. Biomed Pharmacother 2023; 168:115660. [PMID: 37806092 DOI: 10.1016/j.biopha.2023.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus-related microvascular lesions, which remains the leading cause of end-stage kidney disease. The genesis and development of DKD is closely related to inflammation. Myeloid differentiation 2 (MD2) mediates hyperlyciemia-induced renal inflammation and DKD development and is considered as a potential therapeutic target of DKD. Here, we identified a new small-molecule MD2 inhibitor, JM-9. In vitro, JM-9 suppressed high glucose (HG) and palmitic acid (PA)-induced inflammation in MPMs, accompanied by inhibition of MD2 activation and the downstream TLR4/MyD88-MAPKs/NFκB pro-inflammatory signaling pathway. Macrophage-derived factors increased the fibrotic and inflammatory responses in renal tubular epithelial cells, which were inhibited by treating macrophages with JM-9. Then, we investigated the therapeutic effects against DKD in streptozotocin-induced type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) mouse models. Treatment with JM-9 prevented renal inflammation, fibrosis, and dysfunction by targeting MD2 in both T1DM and T2DM models. Our results show that JM-9, a new small-molecule MD2 inhibitor, protects against DKD by targeting MD2 and inhibiting MD2-mediated inflammation. In summary, JM-9 is a potential therapeutic agent for DKD.
Collapse
Affiliation(s)
- Minxiu Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianhui Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuaijie Lou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenqi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohong Long
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ping Huang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Wu Luo
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
13
|
Wang MX, Luo W, Ye L, Jin LM, Yang B, Zhang QH, Qian JC, Wang Y, Zhang Y, Liang G. Dectin-1 plays a deleterious role in high fat diet-induced NAFLD of mice through enhancing macrophage activation. Acta Pharmacol Sin 2023; 44:120-132. [PMID: 35689091 DOI: 10.1038/s41401-022-00926-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
The innate immune response and inflammation contribute to hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Dectin-1 is a pathogen recognition receptor in innate immunity. In this study, we investigated the role of Dectin-1 in the pathogenesis of NAFLD. We first showed that Dectin-1 expression was significantly elevated in liver tissues of patients with NASH. NAFLD was induced in mice by feeding high fat diet (HFD) for 24 weeks. At the end of treatment, mice were sacrificed, and their blood and liver tissues were collected for analyses. We showed HFD feeding also increased liver Dectin-1 levels in mice, associated with macrophage infiltration. Either gene knockout or co-administration of a Dectin-1 antagonist laminarin (150 mg/kg twice a day, ip, from 16th week to 24th week) largely protected the livers from HFD-induced lipid accumulation, fibrosis, and elaboration of inflammatory responses. In primary mouse peritoneal macrophages (MPMs), challenge with palmitate (PA, 200 μM), an abundant saturated fatty acid found in NAFLD, significantly activated Dectin-1 signaling pathway, followed by transcriptionally regulated production of pro-inflammatory cytokines. Dectin-1 was required for hepatic macrophage activation and inflammatory factor induction. Condition media generated from Dectin-1 deficient macrophages failed to cause hepatocyte lipid accumulation and hepatic stellate activation. In conclusion, this study provides the primary evidence supporting a deleterious role for Dectin-1 in NAFLD through enhancing macrophage pro-inflammatory responses and suggests that it can be targeted to prevent inflammatory NAFLD.
Collapse
Affiliation(s)
- Min-Xiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lei-Ming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian-Hui Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian-Chang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
14
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|
15
|
Heldens A, Lefere S. MD2 AMP(K)s up the link between lipid accumulation and inflammation in NAFLD. Clin Transl Med 2022; 12:e832. [PMID: 35452173 PMCID: PMC9028087 DOI: 10.1002/ctm2.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anneleen Heldens
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium.,Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|