1
|
Gerstner AOH, Laffers W, Tárnok A. Clinical applications of slide-based cytometry--an update. JOURNAL OF BIOPHOTONICS 2009; 2:463-469. [PMID: 19670358 DOI: 10.1002/jbio.200910029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Slide-based cytometric approaches open the possibility to obtain quantitative and objective data from specimens that so far have not been accessible to this kind of analysis. In this review, we will highlight the specific advantages of slide-based cytometry (SBC) and show the applications that have been established for clinical samples. Focuses are cytomic analyses of oncological and hematological samples where the slide-based concept turned out to open new dimensions in understanding underlying cellular networks. We review the recent literature and point out future applications.
Collapse
Affiliation(s)
- Andreas O H Gerstner
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | |
Collapse
|
2
|
Kase S, Yoshida K, Ohgami K, Shiratori K, Ohno S, Nakayama KI. Phosphorylation of p27(KIP1) in the Mitotic Cells of the Corneal Epithelium. Curr Eye Res 2009; 31:307-12. [PMID: 16603463 DOI: 10.1080/02713680600584687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The mechanism in regulation of the cell cycle and proliferation of corneal epithelium in the homeostatic ocular surface remains unclear. The aim of this study is to examine the expression of p27(KIP1) and its phosphorylation in corneal epithelium. METHODS The eyes of C57BL/6 mice (7 weeks old) were enucleated. Formalin-fixed and paraffin-embedded tissue sections were examined using immunohistochemistry with anti-p27(KIP1), threonine 187 phosphorylated p27(KIP1) (T187-phospho-p27), and phosphorylated Histon H3 (pHiston H3) antibodies. Anti-T187-phospho-p27 and anti-pHiston H3 polyclonal antibodies were used for parallel immunofluorescent staining. RESULTS pHiston H3-immunopositive cells were noted in basal cells of the corneal epithelium. At high magnification of DAPI nuclear staining, mitotic and non-mitotic cells were observed in corneal basal layer. p27(KIP1)-positive nuclei were detected in corneal basal cells, where non-mitotic basal cells were located. In contrast, mitotic cells showed under detectable level on p27(KIP1) immunoreactivity. Immunoreactivity for T187-phospho-p27 was detected in basal cells of the corneal epithelium. At high magnification, it was confirmed that the immunopositive cells were mitotic cells. Immunoreactivity of T187-phospho-p27 as well as pHiston H3 was localized in the same corneal basal cells using double-staining immunohistochemistry. CONCLUSIONS These results suggested that degradation of p27(KIP1) regulates progression into mitosis in corneal basal cells.
Collapse
Affiliation(s)
- Satoru Kase
- Department of Ophthalmology and Visual Sciences, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
Marur S, Eliason J, Heilbrun LK, Dickow B, Smith DW, Baranowski K, Alhasan S, Vaishampayan U. Phase II trial of capecitabine and weekly docetaxel in metastatic renal cell carcinoma. Urology 2008; 72:898-902. [PMID: 18692873 DOI: 10.1016/j.urology.2008.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 04/23/2008] [Accepted: 05/03/2008] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate the toxicity and efficacy of capecitabine and weekly docetaxel in a phase II clinical trial. METHODS Eligibility included metastatic renal cancer with a maximum of 2 prior regimens, performance status of 0-2, and adequate renal, hepatic, and bone marrow function. Docetaxel was administered intravenously at a dose of 36 mg/m(2) weekly on days 1, 8, and 15 of a 28- day cycle and capecitabine was administered orally at a dose of 1800 mg/m(2) from days 5-18. Toxicity was assessed on days 1, 8, and 15 of each cycle, and response was evaluated every 2 cycles. RESULTS Twenty-five patients, 19 white and 6 African American, were enrolled on this phase II trial. The median age was 60 years (range: 39-75 years). Eighteen patients had clear cell histology, 7 had papillary, sarcomatoid, or chromophobe histology. Thirteen had liver/bone metastases and 13 had >or=2 of the Memorial Sloan-Kettering Cancer Center prognostic risk factors. Twelve patients received prior immunotherapy. A total of 93 cycles were administered; median of 3 cycles and range from 0-10 cycles. The therapy was well tolerated. No treatment-related mortality was observed and 2 treatment-related hospitalizations for nausea, diarrhea, and dehydration occurred. Ten patients had stable disease. The median time to progression was 1.7 months and median survival was 11.1 months. CONCLUSIONS The combination of capecitabine and docetaxel was well tolerated in metastatic renal cancer. Clinical activity was predominantly noted in non-clear cell histology in which chemotherapy would be worthy of future investigation.
Collapse
Affiliation(s)
- Shanthi Marur
- Division of Oncology, Department of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wells SM, Buford MC, Braseth SN, Hutchison JD, Holian A. Acute inhalation exposure to vaporized methamphetamine causes lung injury in mice. Inhal Toxicol 2008; 20:829-38. [PMID: 18645723 PMCID: PMC2753821 DOI: 10.1080/08958370801895121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methamphetamine (MA) is currently the most widespread illegally used stimulant in the United States. Use of MA by smoking is the fastest growing mode of administration, which increases concerns about potential pulmonary and other medical complications. A murine exposure system was developed to study the pulmonary affects of inhaled MA. Mice were exposed to 25-100 mg vaporized MA and assessments were made 3 h following initiation of exposure to model acute lung injury. Inhalation of MA vapor resulted in dose-dependent increases in MA plasma levels that were in the range of those experienced by MA users. At the highest MA dose, histological changes were observed in the lung and small but significant increases in lung wet weight to body weight ratios (5.656 +/- 0.176 mg/g for the controls vs. 6.706+/- 0.135 mg/g for the 100 mg MA-exposed mice) were found. In addition, there was 53% increase in total protein in bronchoalveolar lavage (BAL) fluid, greater than 20% increase in albumin levels in the BAL fluid, greater than 2.5-fold increase in lactate dehydrogenase levels in the BAL fluid, and reduced total BAL cell numbers (approximately 77% of controls). Levels of the early response cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 were dose-dependently increased in BAL fluid of MA-exposed mice. Exposure to 100 mg MA significantly increased free radical generation in the BAL cells to 107-146% of controls and to approximately 135% of the controls in lung tissue in situ. Together, these data show that acute inhalation exposure to relevant doses of volatilized MA is associated with elevated free radical formation and significant lung injury.
Collapse
Affiliation(s)
- Sandra M Wells
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, USA.
| | | | | | | | | |
Collapse
|
5
|
Abstract
One hundred and fifty years after Virchow introduced his fundamental concept of cellular pathology, we now have tools that allow us to unravel the mechanisms of single living cells on a previously unprecedented level of detail. By exploring the molecular cellular phenotype, multiparametric cytometry not only detects specific cellular functions in general but also offers insights into the interaction of single subunits of proteins (e.g., growth factor receptors). Several quantitative and objective techniques allow analysis of single-cell preparations as well as tissue sections to obtain data on different cellular parameters. This opens the way to quantitative and objective histology, which in the future may be possible even without blood or the need to make an incision. To use this huge amount of data for treatment decisions in an individual patient, novel bioinformatic concepts are needed in order to predict the individual course of a disease. The concept of cytomics centers on the cell as the integral unit of all life and explores diseases starting from the cell and going to subcellular units (top-down analysis).
Collapse
|
6
|
Krishan A. What links cod liver oil, spinach, and flow cytometry? Flow cytometric detection and quantitation of folic acid receptors in tumor cells. Cytometry A 2007; 71:897-8. [PMID: 17943994 DOI: 10.1002/cyto.a.20467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Awtar Krishan
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| |
Collapse
|
7
|
Schwock J, Ho JC, Luther E, Hedley DW, Geddie WR. Measurement of Signaling Pathway Activities in Solid Tumor Fine-needle Biopsies by Slide-based Cytometry. ACTA ACUST UNITED AC 2007; 16:130-40. [PMID: 17721320 DOI: 10.1097/pdm.0b013e31803df480] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The application of molecular targeted therapies is expected to cause a modulation of cellular signaling pathway(s) that can be monitored by sequential biopsies. Fine-needle sampling (FNS) is an atraumatic and safe technique that can be repeated at numerous points during the clinical or experimental administration of a drug. However, small volume and paucicellularity of fine-needle samples may preclude a comprehensive analysis. We describe here the image-based detection of phosphorylated signaling proteins, an approach for the measurement of pathway activities and preliminary concepts for a multiplexed analysis in these specimens. Fine-needle samples were obtained from xenograft tumors and used for cell block preparations. Preanalytical parameters for the detection of phosphorylated Stat3 and nuclear factor kappaB were determined. A cytometric approach for the measurement of pathway activities was tested using 2 different slide-based analysis techniques applied to immunofluorescence and immunohistochemistry. Changes in the phosphorylation state of Stat3 and nuclear factor kappaB were observed due to delayed fixation and reproducibly quantified. Data obtained from xenografts after drug treatment suggest that slide-based cytometry gives results that are comparable to conventional analysis methods. The applicability of quantum dot nanocrystals for the detection of phosphorylated Stat3 and the combination of different labeling techniques suggest a potential for a multiplexed analysis. We propose here that FNS of solid tumors may be useful in anatomic sites where core-needle biopsies are not possible or not well tolerated. FNS can be used for biomarkers with a homogeneous distribution throughout the tumor, and slide-based analysis techniques may be applied to quantify pathway activities.
Collapse
Affiliation(s)
- Jörg Schwock
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
8
|
Tárnok A, Bocsi J, Brockhoff G. Cytomics - importance of multimodal analysis of cell function and proliferation in oncology. Cell Prolif 2007; 39:495-505. [PMID: 17109634 PMCID: PMC6496464 DOI: 10.1111/j.1365-2184.2006.00407.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer is a highly complex and heterogeneous disease involving a succession of genetic changes (frequently caused or accompanied by exogenous trauma), and resulting in a molecular phenotype that in turn results in a malignant specification. The development of malignancy has been described as a multistep process involving self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and finally tissue invasion and metastasis. The quantitative analysis of networking molecules within the cells might be applied to understand native-state tissue signalling biology, complex drug actions and dysfunctional signalling in transformed cells, that is, in cancer cells. High-content and high-throughput single-cell analysis can lead to systems biology and cytomics. The application of cytomics in cancer research and diagnostics is very broad, ranging from the better understanding of the tumour cell biology to the identification of residual tumour cells after treatment, to drug discovery. The ultimate goal is to pinpoint in detail these processes on the molecular, cellular and tissue level. A comprehensive knowledge of these will require tissue analysis, which is multiplex and functional; thus, vast amounts of data are being collected from current genomic and proteomic platforms for integration and interpretation as well as for new varieties of updated cytomics technology. This overview will briefly highlight the most important aspects of this continuously developing field.
Collapse
Affiliation(s)
- A Tárnok
- Department of Paediatric Cardiology, Cardiac Centre Leipzig GmbH, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
9
|
Wijsman JA, Obert LA, Paulissen J, Garrido R, Toy KA, Dunstan RW. A practical method to determine the amount of tissue to analyze using laser scanning cytometry. Cytometry A 2007; 71:501-8. [PMID: 17366639 DOI: 10.1002/cyto.a.20397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Laser scanning cytometry (LSC) is a new technology similar to flow cytometry but generates data from analysis of successive microscopic fields. Unlike its use in other applications, LSC-generated data are not random when used for tissue sections, but are dependent on the microanatomy of the tissue and the distribution and expression of the protein under investigation. For valid LSC analysis, the data generated requires the evaluation of a sufficient tissue area to ensure an accurate representation of expression within the tissue of interest. METHODS In this report, we describe a simple and common sense method for determining the area of tissue required for sound LSC analysis by tracking the variation in the measure of target expression with increasing number of fields until it approaches zero. RESULTS This approach was used to evaluate the expression of immunohistochemical markers with differing tissue distributions in liver (PMP70, CYP1A2, and Ki67 positive macrophages) and a colorectal adenocarcinoma (activated caspase-3 positive cells), which exhibited diffuse, regional (centrilobular), random, and irregular distribution patterns respectively. CONCLUSIONS Analyses of these markers demonstrated that the amount of tissue area required to reach a steady measure of a parameter increased with increasing variability of the tissue distribution.
Collapse
Affiliation(s)
- John A Wijsman
- Investigative Pathology Laboratory, Pfizer Global Research and Development, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
In the postgenomic era, to gain the most detailed quantitative data from biological specimens has become increasingly important in the emerging new fields of high-content and high-throughput single-cell analysis for systems biology and cytomics. Areas of research and diagnosis with the demand to virtually measure "anything" in the cell include immunophenotyping, rare cell detection and characterization in the case of stem cells and residual tumor cells, tissue analysis, and drug discovery. Systemic analysis is also a prerequisite for predictive medicine by genomics, proteomics, and cytomics. This issue of Cytometry Part A is dedicated to innovative concepts of system wide single cells analysis and manipulation, new technologies, data analysis and display, and, finally, quality assessment. The manuscripts to these chapters are provided by cutting edge experts in the fields. This overview will briefly highlight the most important aspects of this continuously developing field.
Collapse
Affiliation(s)
- Attila Tárnok
- Department of Pediatric Cardiology, Cardiac Center Leipzig GmbH, University of Leipzig, Germany.
| |
Collapse
|
11
|
Mittag A, Lenz D, Gerstner AOH, Tárnok A. Hyperchromatic cytometry principles for cytomics using slide based cytometry. Cytometry A 2006; 69:691-703. [PMID: 16680709 DOI: 10.1002/cyto.a.20285] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Polychromatic analysis of biological specimens has become increasingly important because of the emerging new fields of high-content and high-throughput single cell analysis for systems biology and cytomics. Combining different technologies and staining methods, multicolor analysis can be pushed forward to measure anything stainable in a cell. We term this approach hyperchromatic cytometry and present different components suitable for achieving this task. For cell analysis, slide based cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide and can be reanalyzed following restaining of the object. METHODS AND RESULTS We demonstrate various approaches for hyperchromatic analysis on a SBC instrument, the Laser Scanning Cytometer. The different components demonstrated here include (1) polychromatic cytometry (staining of the specimen with eight or more different fluorochromes simultaneously), (2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), (3) differential photobleaching (differentiating fluorochromes by their different photostability), (4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and (5) photodestruction (destruction of FRET dyes). Based on the ability to relocate cells that are immobilized on a microscope slide with a precision of approximately 1 microm, identical cells can be reanalyzed on the single cell level after manipulation steps. CONCLUSION With the intelligent combination of several different techniques, the hyperchromatic cytometry approach allows to quantify and analyze all components of relevance on the single cell level. The information gained per specimen is only limited by the number of available antibodies and sterical hindrance.
Collapse
Affiliation(s)
- Anja Mittag
- Department of Pediatric Cardiology, Cardiac Center Leipzig GmbH, University of Leipzig, Germany
| | | | | | | |
Collapse
|
12
|
Abstract
The laser scanning cytometer (LSC) is the microscope-based cytofluorometer that offers a plethora of analytical capabilities. Multilaser-excited fluorescence emitted from individual cells is measured at several wavelength ranges, rapidly (up to 5000 cells/min), with high sensitivity and accuracy. The following applications of LSC are reviewed: (1) identification of cells that differ in degree of chromatin condensation (e.g., mitotic or apoptotic cells or lymphocytes vs granulocytes vs monocytes); (2) detection of translocation between cytoplasm vs nucleus or nucleoplasm vs nucleolus of regulatory molecules such as NF-kappaB, p53, or Bax; (3) semiautomatic scoring of micronuclei in mutagenicity assays; (4) analysis of fluorescence in situ hybridization; (5) enumeration and morphometry of nucleoli; (6) analysis of phenotype of progeny of individual cells in clonogenicity assay; (7) cell immunophenotyping; (8) visual examination, imaging, or sequential analysis of the cells measured earlier upon their relocation, using different probes; (9) in situ enzyme kinetics and other time-resolved processes; (10) analysis of tissue section architecture; (11) application for hypocellular samples (needle aspirate, spinal fluid, etc.); (12) other clinical applications. Advantages and limitations of LSC are discussed and compared with flow cytometry.
Collapse
Affiliation(s)
- Piotr Pozarowski
- The Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
13
|
|