1
|
Maupilé L, Chaib J, Boualem A, Bendahmane A. Parthenocarpy, a pollination-independent fruit set mechanism to ensure yield stability. TRENDS IN PLANT SCIENCE 2024; 29:1254-1265. [PMID: 39034223 DOI: 10.1016/j.tplants.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Fruit development is essential for flowering plants' reproduction and a significant food source. Climate change threatens fruit yields due to its impact on pollination and fertilization processes, especially vulnerable to extreme temperatures, insufficient light, and pollinator decline. Parthenocarpy, the development of fruit without fertilization, offers a solution, ensuring yield stability in adverse conditions and enhancing fruit quality. Parthenocarpic fruits not only secure agricultural production but also exhibit improved texture, appearance, and shelf life, making them desirable for food processing and other applications. Recent research unveils the molecular mechanisms behind parthenocarpy, implicating transcription factors (TFs), noncoding RNAs, and phytohormones such as auxin, gibberellin (GA), and cytokinin (CK). Here we review recent findings, construct regulatory models, and identify areas for further research.
Collapse
Affiliation(s)
- Lea Maupilé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Vilmorin & Cie, Route d'Ennezat, 63720 Chappes, France
| | - Jamila Chaib
- Vilmorin & Cie, Paraje La Reserva, 04725 La Mojonera, Spain
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
2
|
Nowicka A, Ferková Ľ, Said M, Kovacik M, Zwyrtková J, Baroux C, Pecinka A. Non-Rabl chromosome organization in endoreduplicated nuclei of barley embryo and endosperm tissues. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2527-2541. [PMID: 36705553 DOI: 10.1093/jxb/erad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 06/06/2023]
Abstract
Rabl organization is a type of interphase chromosome arrangement with centromeres and telomeres clustering at opposite nuclear poles. Here, we analyzed nuclear morphology and chromosome organization in cycling and endoreduplicated nuclei isolated from embryo and endosperm tissues of developing barley seeds. We show that endoreduplicated nuclei have an irregular shape, less sister chromatid cohesion at 5S rDNA loci, and a reduced amount of centromeric histone CENH3. While the chromosomes of the embryo and endosperm nuclei are initially organized in Rabl configuration, the centromeres and telomeres are intermingled within the nuclear space in the endoreduplicated nuclei with an increasing endoreduplication level. Such a loss of chromosome organization suggests that Rabl configuration is introduced and further reinforced by mitotic divisions in barley cell nuclei in a tissue- and seed age-dependent manner.
Collapse
Affiliation(s)
- Anna Nowicka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Ľuboslava Ferková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Martin Kovacik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Jana Zwyrtková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| |
Collapse
|
3
|
Han Y, Zhao J, Jiao Z, Chao Z, Tárnok A, You Z. Diffractive Beam Shaper for Multiwavelength Lasers for Flow Cytometry. Cytometry A 2020; 99:194-204. [PMID: 33078537 DOI: 10.1002/cyto.a.24240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
Abstract
Illumination spot in a flow cytometer is a crucial factor determining the measurement accuracy and stability. The traditional mechanism is to precisely calibrate multiple optical components to convert circular Gaussian beams into elliptical Gaussian beams, making it difficult to shape multiwavelength lasers simultaneously. A diffractive beam shaper for multicolor lasers with high simplicity, only containing one diffractive optical element and one focusing lens is created in this work. It can produce rectangular spots, of which the number, the sizes, and the positions are accurately determined by the incident wavelengths. Demonstrated in the customized microflow cytometer, the coefficient of variations (CV) of the optical signals by the beam shaper are 3.6-6.5%, comparable to those derived from the commercial instrument with 3.3-6.3% CVs. Benefiting from the narrow rectangular spots and the flexibility of diffractively shaped lasers, the measurement of bead sizes with 4-15 μm diameters and the real-time detection of flow velocity from 0.79 to 9.50 m/s with the CV of <5% are achieved. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yong Han
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China.,Department of Precision Instrument, Tsinghua University, Beijing, China.,Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing, China
| | - Jingjing Zhao
- Department of Structural Biology, Stanford University, School of Medicine, Stanford, California, USA
| | - Zeheng Jiao
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China.,Department of Precision Instrument, Tsinghua University, Beijing, China.,Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing, China
| | - Zixi Chao
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China.,Department of Precision Instrument, Tsinghua University, Beijing, China.,Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing, China
| | - Attila Tárnok
- Department of Precision Instrument, Tsinghua University, Beijing, China.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China.,Department of Precision Instrument, Tsinghua University, Beijing, China.,Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Laimbeer FPE, Makris M, Veilleux RE. Measuring Endoreduplication by Flow Cytometry of Isolated Tuber Protoplasts. J Vis Exp 2018. [PMID: 29578518 PMCID: PMC5931677 DOI: 10.3791/57134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endoreduplication, the replication of a cell's nuclear genome without subsequent cytokinesis, yields cells with increased DNA content and is associated with specialization, development and increase in cellular size. In plants, endoreduplication seems to facilitate the growth and expansion of certain tissues and organs. Among them is the tuber of potato (Solanum tuberosum), which undergoes considerable cellular expansion in fulfilling its function of carbohydrate storage. Thus, endoreduplication may play an important role in how tubers are able to accommodate this abundance of carbon. However, the cellular debris resulting from crude nuclear isolation methods of tubers, methods that can be used effectively with leaves, precludes the estimation of the tuber endoreduplication index (EI). This article presents a technique for assessing tuber endoreduplication through the isolation of protoplasts while demonstrating representative results obtained from different genotypes and compartmentalized tuber tissues. The major limitations of the protocol are the time and reagent costs required for sample preparation as well as relatively short lifespan of samples after lysis of protoplasts. While the protocol is sensitive to technical variation, it represents an improvement over traditional methods of nuclear isolation from these large specialized cells. Possibilities for improvements to the protocol such as recycling enzyme, the use of fixatives, and other alterations are proposed.
Collapse
Affiliation(s)
| | - Melissa Makris
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech
| | | |
Collapse
|
5
|
Brown SC, Bourge M, Maunoury N, Wong M, Wolfe Bianchi M, Lepers-Andrzejewski S, Besse P, Siljak-Yakovlev S, Dron M, Satiat-Jeunemaître B. DNA Remodeling by Strict Partial Endoreplication in Orchids, an Original Process in the Plant Kingdom. Genome Biol Evol 2017; 9:1051-1071. [PMID: 28419219 PMCID: PMC5546068 DOI: 10.1093/gbe/evx063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
DNA remodeling during endoreplication appears to be a strong developmental characteristic in orchids. In this study, we analyzed DNA content and nuclei in 41 species of orchids to further map the genome evolution in this plant family. We demonstrate that the DNA remodeling observed in 36 out of 41 orchids studied corresponds to strict partial endoreplication. Such process is developmentally regulated in each wild species studied. Cytometry data analyses allowed us to propose a model where nuclear states 2C, 4E, 8E, etc. form a series comprising a fixed proportion, the euploid genome 2C, plus 2-32 additional copies of a complementary part of the genome. The fixed proportion ranged from 89% of the genome in Vanilla mexicana down to 19% in V. pompona, the lowest value for all 148 orchids reported. Insterspecific hybridization did not suppress this phenomenon. Interestingly, this process was not observed in mass-produced epiphytes. Nucleolar volumes grow with the number of endocopies present, coherent with high transcription activity in endoreplicated nuclei. Our analyses suggest species-specific chromatin rearrangement. Towards understanding endoreplication, V. planifolia constitutes a tractable system for isolating the genomic sequences that confer an advantage via endoreplication from those that apparently suffice at diploid level.
Collapse
Affiliation(s)
- Spencer C. Brown
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| | - Mickaël Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| | - Nicolas Maunoury
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| | - Maurice Wong
- Service du Développement Rural, Papeete Tahiti, French Polynesia,
France
| | - Michele Wolfe Bianchi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| | | | - Pascale Besse
- UMR 53, PVBMT Université de la Réunion – Cirad, Pôle de Protection des
Plantes, St Pierre, France
| | - Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech,
Université Paris-Saclay, Orsay Cedex, France
| | - Michel Dron
- Institute of Plant Sciences Paris Saclay IPS2, Université Paris-Sud, CNRS,
INRA, Université Evry, Université Paris Diderot, Sorbonne Paris-Cité, Université
Paris-Saclay, Orsay, France
| | - Béatrice Satiat-Jeunemaître
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| |
Collapse
|
6
|
Renaudin JP, Deluche C, Cheniclet C, Chevalier C, Frangne N. Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1613-1623. [PMID: 28369617 PMCID: PMC5444452 DOI: 10.1093/jxb/erx058] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In angiosperms, the ovary wall resumes growth after pollination through a balanced combination of cell division and cell expansion. The quantitative pattern of these events remains poorly known in fleshy fruits such as tomato (Solanum spp.), in which dramatic growth of the pericarp occurs together with endoreduplication. Here, this pattern is reported at the level of each of the cell layers or groups of cell layers composing the pericarp, except for vascular bundles. Overall, cell division and cell expansion occurred at similar rates for 9 days post anthesis (DPA), with very specific patterns according to the layers. Subsequently, only cell expansion continued for up to 3-4 more weeks. New cell layers in the pericarp originated from periclinal cell divisions in the two sub-epidermal cell layers. The shortest doubling times for cell number and for cell volume were both detected early, at 4 DPA, in epicarp and mesocarp respectively, and were both found to be close to 14 h. Endoreduplication started before anthesis in pericarp and was stimulated at fruit set. It is proposed that cell division, endoreduplication, and cell expansion are triggered simultaneously in specific cell layers by the same signals issuing from pollination and fertilization, which contribute to the fastest relative fruit growth early after fruit set.
Collapse
Affiliation(s)
- Jean-Pierre Renaudin
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Cynthia Deluche
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Catherine Cheniclet
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
- UMS 3420, Bordeaux Imaging Center, CNRS, US4, INSERM, University of Bordeaux, F-33000 Bordeaux, France
| | - Christian Chevalier
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Nathalie Frangne
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
7
|
Light signaling controls nuclear architecture reorganization during seedling establishment. Proc Natl Acad Sci U S A 2015; 112:E2836-44. [PMID: 25964332 DOI: 10.1073/pnas.1503512112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.
Collapse
|