1
|
Yu M, Zheng C, Wang X, Peng R, Lu G, Zhang J. Phosphatidylserine induce thrombotic tendency and liver damage in obstructive jaundice. BMC Gastroenterol 2025; 25:146. [PMID: 40050731 PMCID: PMC11884107 DOI: 10.1186/s12876-025-03739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
INTRODUCTION Hypercoagulability contributes to the majority of deaths and organ failure associated with obstructive jaundice (OJ). However, the exact mechanism of the coagulopathy in OJ remains elusive. Our objectives were to demonstrate whether phosphatidylserine (PS) exposure on blood cells (BCs), microparticles (MPs), and endothelial cells (ECs) can account for the hypercoagulability and liver damage in OJ patients. METHODS We evaluated OJ patients at two time point, which before (Day 0) and 7 days (Day 7) after the endoscopic retrograde cholangiopancreatography procedure (ERCP), and compared with healthy controls. Lactadherin was used to quantify PS exposure on BCs, MPs and ECs. Human umbilical vein endothelial cells (HUVECs) were incubated with serum of OJ patients and the expression of PS were evaluated. Meanwhile, healthy BCs and HUVECs were treated with 0, 25, 50 or 100µM unconjugated bilirubin (UCB) and PS exposure on cells were evaluated. Procoagulant activity was evaluated by purified coagulation complex assays, clotting time, and fibrin turbidity. In addition, we established a cholestatic mouse model by bile duct ligation to determine the potential role of PS in intrahepatic coagulation and liver damage. RESULTS Using flow cytometry, we found that OJ patients exhibited elevated levels of PS + BCs and associated MPs compared to the controls. Furthermore, the number of PS + BCs and MPs in patients at Day 0 were significantly higher than in patients at Day 7. Similarly, we observed markedly elevated PS exposure on HUVECs cultured with serum from patients at Day 0 versus serum from patients at Day 7. In vitro assays, PS exposure on BCs and HUVECs progressively increased with the concentration of UCB. Moreover, PS + BCs and MPs contributed to greatly shortened coagulation time and markedly enhanced coagulation factor Xa, thrombin, and fibrin generation. This procoagulant activity could be blocked approximately 80%, by the addition of lactadherin. Moreover, cholestatic mice exhibited significantly increased levels of liver tissue necrosis, fibrin deposition, and thrombophilia compared to sham mice. The enhanced intrahepatic coagulation and liver injury could be reversed by inhibiting PS with lactadherin. CONCLUSIONS These results highlight the pathogenic activity of PS + cells and MPs in promoting a prothrombotic environment and liver damage in OJ. As such, lactadherin, a PS blockade, may be a viable therapeutic strategy for treating such patients.
Collapse
Affiliation(s)
- Muxin Yu
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Chuwei Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Xiaoguang Wang
- Department of Hepatic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Rong Peng
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Guoming Lu
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Jinming Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
2
|
Qi L, Yang Y, Xie X, Xiang L, Zhang S, Li X, Zhou L, Zhao D, Dong N, Zhang H, Zhang H. Elevated Homocysteine Levels and Endothelial Dysfunction in Unexplained Recurrent Spontaneous Abortion. Int J Womens Health 2025; 17:429-437. [PMID: 39990927 PMCID: PMC11844264 DOI: 10.2147/ijwh.s503677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
Background Recurrent spontaneous abortion, a common condition in reproductive medicine, often arises from complex factors and lacks specific treatments. While studies have associated folate metabolism abnormalities with poor embryonic development, research on methionine metabolism, particularly homocysteine levels, has been limited. Methods In this study, we analyzed blood samples from women with RSA and those with normal pregnancies. Results We observed elevated homocysteine levels in women with RSA, which were correlated with increased total plasma microparticles, endothelial microparticles (EMPs), and free plasma DNA. Furthermore, we exposed human umbilical vein endothelial cells (HUVECs) to varying concentrations of homocysteine (0, 0.5, 1, 2, 4, 8 mmol/L). We found that higher homocysteine levels exacerbated its cytotoxic effects on HUVECs. Flow cytometry revealed that homocysteine compromised cell membrane integrity, enhanced membrane permeability, and promoted EMPs release. Our findings suggest that elevated homocysteine levels in women with RSA may induce significant endothelial cell apoptosis, leading to endothelial dysfunction and an increase in released microparticles and free DNA, potentially contributing to miscarriages. Conclusion This study may contribute to understanding and exploring the underlying mechanisms of unexplained recurrent spontaneous abortion (URSA).
Collapse
Affiliation(s)
- Lin Qi
- Department of Clinical Laboratory, the second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Yong Yang
- Department of Clinical Laboratory, the second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Xiaofang Xie
- Department of Clinical Laboratory, the second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Liping Xiang
- Department of Gynaecology and Obstetrics,The second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Shuyun Zhang
- Department of Gynaecology and Obstetrics,The second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Xue Li
- Department of Gynaecology and Obstetrics,The second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Ling Zhou
- Department of Gynaecology and Obstetrics,The second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Dan Zhao
- Department of Clinical Laboratory, the second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Ningzheng Dong
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Suzhou, Jiangsu, 215000, People’s Republic of China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical College, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Haifang Zhang
- Department of Clinical Laboratory, the second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Hong Zhang
- Department of Gynaecology and Obstetrics,The second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| |
Collapse
|
3
|
Dai J, Su L. Perioperative Application of Point-of-care Test for Blood Viscoelasticity: A Good Choice for Coagulation Management. J Perianesth Nurs 2024:S1089-9472(24)00396-4. [PMID: 39520424 DOI: 10.1016/j.jopan.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024]
Abstract
Point-of-care test (POCT) of blood viscoelasticity can reflect the coagulation status of patients accurately and timely. POCT can be used to monitor the effect of preoperative antithrombotic drugs on coagulation function, which will inform the selection of appropriate surgical timing. It can also be applied to analyze the reasons of intraoperative bleeding and guide the transfusion of blood products. Also, it is useful to assess the risk of postoperative thromboembolism and hint the need for prophylactic anticoagulation. This article mainly introduces the principles and clinical application of several frequently used POCTs for blood viscoelasticity, with a focus on their role in special types of diseases in which coagulation function changes significantly, such as cardiac disease, trauma, pathological obstetrics, and liver disease. Furthermore, we describe the role of microparticle in coagulation, which is a novel potential biomarker for diagnosing thrombotic disorders and possesses potential to be applied in POCTs of blood viscoelasticity.
Collapse
Affiliation(s)
- Jiazhen Dai
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Su
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Napolitano A, Toffanin S, Bulato C, Campello E, Simioni P, Spiezia L. Cryptogenic ischemic stroke in cardiac transthyretin amyloidosis and sinus rhythm: a case report. Front Cardiovasc Med 2024; 11:1386733. [PMID: 38803660 PMCID: PMC11128557 DOI: 10.3389/fcvm.2024.1386733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiac amyloidosis is a group of diseases characterized by the deposition of amyloid fibers in cardiac tissue. Two forms are mainly reported: light chain (AL) and transthyretin (ATTR) amyloidosis. Among the complications of transthyretin amyloidosis there are thrombotic events and, to a lesser extent, hemorrhagic events. The latter are likely caused by perivascular amyloid deposition resulting in capillary fragility, in addition to INR lability during anticoagulant therapy. The onset of thrombotic events may be caused by the high prevalence of atrial fibrillation (AF), mechanical cardiac dysfunction and atrial myopathy observed in patients with transthyretin amyloidosis. It remains unclear why thromboembolic events occur even in patients with sinus rhythm or adequate anticoagulation, though a hypercoagulable state or underlying inflammation may be involved. We report a case of cryptogenic ischemic stroke in an 86-year-old woman with transthyretin amyloidosis and sinus rhythm. Traditional coagulation tests, whole blood rotational thromboelastometry and impedance aggregometry did not show a hypercoagulable state. The thrombin generation assay did not reveal a prothrombotic state. However, the study of extracellular vesicles highlighted underlying immune-mediated endothelial damage likely responsible for the thrombotic diathesis. It could be hypothesized that inflammation plays a role in the hypercoagulability of patients with transthyretin amyloidosis. Larger prospective studies are needed to validate our hypothesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Spiezia
- General Internal Medicine & Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, Padova University School of Medicine, Padova, Italy
| |
Collapse
|
5
|
Li M, Zhao Y, Chen X, Du X, Luo Y, Li Y, Kang J, Wan L, Tang J, Fu X. Comparative analysis of the quality of platelet concentrates produced by apheresis procedures, platelet rich plasma, and buffy coat. Transfusion 2024; 64:367-379. [PMID: 38174435 DOI: 10.1111/trf.17704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Platelet concentrates (PCs) could be prepared using either whole-blood processes or apheresis instruments. During collection, processing and storage, some biochemical and functional changes occur, which may result in quality reduction. Quality evaluation of PCs may be helpful for the precise control of platelet (PLT) inventory to reduce the risk of refractoriness and adverse effects caused by platelet transfusion. STUDY DESIGN AND METHODS The study was aimed to evaluate the quality of PCs which were produced by five processes: apheresis (AP) procedures (using three different cell separators: Amicus, Trima Accel and MCS+ instruments), platelet rich plasma (PRP), and buffy coat (BC). A total of 100 PCs (20 of each group) were assessed in respect of routine quality control, morphology, size distribution, destroyed and activated platelets, and production of platelet-derived microparticles (PMPs). RESULTS All PCs have satisfied the recommended quality of volume, platelet count, residual WBC count, residual RBC count, pH, and sterility according to the Chinese Technical Manual. There was no difference among the 5 groups in morphology and size of PLT and PMPs. Dynamic light scattering test showed that apheresis PCs showed peaks around 10-20 nm, but not whole blood-derived PCs. PCs prepared by Amicus had the relatively high percentage of destroyed platelet, activated platelets and PMPs than other groups. DISCUSSION The data suggested high heterogeneity of PMPs, destroyed and activated platelets in PCs produced by different processes, which might be helpful to manage the platelet inventory for targeted use.
Collapse
Affiliation(s)
- Meng Li
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Yuwei Zhao
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Xue Chen
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Xinman Du
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Yue Luo
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Ying Li
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Jianxun Kang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Like Wan
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Jingyun Tang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Xuemei Fu
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| |
Collapse
|
6
|
Sacerdoti F, Gomez FD, Jancic C, Lombardo T, Pascuale CA, Moretton MA, Chiappetta DA, Ibarra C, Amaral MM. Detection and characterization of circulating microvesicles containing Shiga toxin type 2 in a rat model of Hemolytic Uremic Syndrome. Toxicon 2023; 236:107349. [PMID: 37979924 DOI: 10.1016/j.toxicon.2023.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Shiga toxin producing Escherichia coli (STEC) are foodborne pathogens that release Shiga toxin (Stx), virulence factor responsible for the development of Hemolytic Uremic Syndrome (HUS). Stx causes endothelial cell damage, which leads to platelets deposition and thrombi formation within the microvasculature. It has been described that Stx activates blood cells and induces the shedding of proinflammatory and prothrombotic microvesicles (MVs) containing the toxin. In this sense, it has been postulated that MVs containing Stx2 (MVs-Stx2+) can contribute to the physiopathology of HUS, allowing Stx2 to reach the target organs while evading the immune system. In this work, we propose that circulating MVs-Stx2+ can be a potential biomarker for the diagnosis and prognosis of STEC infections and HUS progression. We developed a rat HUS model by the intraperitoneal injection of a sublethal dose of Stx2 and observed: decrease in body weight, increase of creatinine and urea levels, decrease of creatinine clearance and histological renal damages. After characterization of renal damages, we investigated circulating total MVs and MVs-Stx2+ by flow cytometry at different times after Stx2 injection. Additionally, we evaluated the correlation of biochemical parameters such as creatinine and urea in plasma with MVs-Stx2+. As a result, we found a significant circulation of MVs-Stx2+ at 72 and 96 h after Stx2 injection, nevertheless no correlation with creatinine and urea plasma levels were detected. Our results suggest that MVs-Stx2+ may be an additional biomarker for the characterization and diagnosis of HUS progression. A further analysis is required in order to validate MVs-Stx2+ as biomarker of the disease.
Collapse
Affiliation(s)
- Flavia Sacerdoti
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Laboratorio de Fisiopatogenia. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay). Buenos Aires, Argentina.
| | - Fernando D Gomez
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Laboratorio de Fisiopatogenia. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay). Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Medicina Experimental - CONICET - Academia Nacional de Medicina, Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tomas Lombardo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Buenos Aires, Argentina; Instituto de Estudios de la Inmunidad Humoral Dr. R.A. Margni (IDEHU), UBA-CONICET, Argentina
| | - Carla A Pascuale
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Argentina
| | - Marcela A Moretton
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Diego A Chiappetta
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cristina Ibarra
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Laboratorio de Fisiopatogenia. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay). Buenos Aires, Argentina
| | - María M Amaral
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Laboratorio de Fisiopatogenia. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay). Buenos Aires, Argentina.
| |
Collapse
|
7
|
Zhang J, Hu X, Wang T, Xiao R, Zhu L, Ruiz M, Dupuis J, Hu Q. Extracellular vesicles in venous thromboembolism and pulmonary hypertension. J Nanobiotechnology 2023; 21:461. [PMID: 38037042 PMCID: PMC10691137 DOI: 10.1186/s12951-023-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Venous thromboembolism (VTE) is a multifactorial disease, and pulmonary hypertension (PH) is a serious condition characterized by pulmonary vascular remodeling leading with increased pulmonary vascular resistance, ultimately leading to right heart failure and death. Although VTE and PH have distinct primary etiologies, they share some pathophysiologic similarities such as dysfunctional vasculature and thrombosis. In both conditions there is solid evidence that EVs derived from a variety of cell types including platelets, monocytes, endothelial cells and smooth muscle cells contribute to vascular endothelial dysfunction, inflammation, thrombosis, cellular activation and communications. However, the roles and importance of EVs substantially differ between studies depending on experimental conditions and parent cell origins of EVs that modify the nature of their cargo. Numerous studies have confirmed that EVs contribute to the pathophysiology of VTE and PH and increased levels of various EVs in relation with the severity of VTE and PH, confirming its potential pathophysiological role and its utility as a biomarker of disease severity and as potential therapeutic targets.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Pathology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiaoyi Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
8
|
Iwasaki Y, Takei Y, Yamada M, Sugino S, Saito K, Aoyagi T, Oshima K, Kanamori H, Baba H, Takei K, Tokuda K, Kodama EN, Kamo T, Kamio T, Kasai T, Ogawa S, Yamauchi M. Circulating Extracellular Vesicle Levels in Patients with Coronavirus Disease 2019 Coagulopathy: A Prospective Cohort Study. J Clin Med 2023; 12:jcm12103460. [PMID: 37240566 DOI: 10.3390/jcm12103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with coagulopathy. However, the underlying mechanisms are not completely understood. We evaluated the association between COVID-19 coagulopathy and extracellular vesicle (EV) levels. We hypothesized that several EV levels would be higher in COVID-19 coagulopathy patients than in non-coagulopathy patients. This prospective observational study was conducted in four tertiary care faculties in Japan. We enrolled 99 COVID-19 patients (48 with coagulopathy and 51 without coagulopathy) aged ≥20 years who required hospitalization, and 10 healthy volunteers; we divided the patients into coagulopathy and non-coagulopathy groups according to the D-dimer levels (≥1 μg/mL and <1 μg/mL, respectively). We used flow cytometry to measure the tissue-factor-bearing, endothelium-derived, platelet-derived, monocyte-derived, and neutrophil-derived EV levels in platelet-free plasma. The EV levels were compared between the two COVID-19 groups as well as among the coagulopathy patients, non-coagulopathy patients, and healthy volunteers. No significant difference was found in EV levels between the two groups. Meanwhile, the cluster of differentiation (CD) 41 + EV levels were significantly higher in COVID-19 coagulopathy patients than in healthy volunteers (549.90 [255.05-984.65] vs. 184.3 [150.1-254.1] counts/µL, p = 0.011). Therefore, CD41+ EVs might play an essential role in COVID-19 coagulopathy development.
Collapse
Affiliation(s)
- Yudai Iwasaki
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yusuke Takei
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Shigekazu Sugino
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Koji Saito
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tetsuji Aoyagi
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kengo Oshima
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Hiroaki Baba
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kentarou Takei
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Koichi Tokuda
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Eichi N Kodama
- Division of Infectious Diseases, International Research Institute of Disaster Science, Graduate School of Medicine, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tetsuro Kamo
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Center, Imperial Gift Foundation Saiseikai, Utsunomiya Hospital, Utsunomiya-shi 321-0974, Tochigi, Japan
| | - Tadashi Kamio
- Department of Intensive Care, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura 247-8533, Kanagawa, Japan
| | - Takehiko Kasai
- Department of Emergency Medicine, Sapporo Medical University, South 1 West 17, Sapporo 060-8556, Hokkaido, Japan
| | - Satoru Ogawa
- Department of Pain Management and Palliative Care Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Kyoto, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
9
|
Prakash S, Bies J, Hassan M, Mares A, Didia SC. Portal vein thrombosis in cirrhosis: A literature review. Front Med (Lausanne) 2023; 10:1134801. [PMID: 37181351 PMCID: PMC10169608 DOI: 10.3389/fmed.2023.1134801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/03/2023] [Indexed: 05/16/2023] Open
Abstract
Portal Vein Thrombosis (PVT), a common complication of advanced liver disease, is defined as an obstruction of the portal vein due to thrombus formation that can extend to the superior mesenteric and splenic veins. It was believed that PVT occurred predominantly due to prothrombotic potential. However, recent studies have shown that decreased blood flow related to portal hypertension appears to increase PVT risk as per Virchow's triad. It is well known that there is a higher incidence of PVTs in cirrhosis with a higher MELD and Child Pugh score. The controversy for management of PVTs in cirrhotics lies in the individualized assessment of risks versus benefits of anticoagulation, since these patients have a complex hemostatic profile with both bleeding and procoagulant propensities. In this review, we will systematically compile the etiology, pathophysiology, clinical features, and management of portal vein thrombosis in cirrhosis.
Collapse
Affiliation(s)
- Swathi Prakash
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Jared Bies
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Mariam Hassan
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Adriana Mares
- Paul L. Foster School of Medicine, El Paso, TX, United States
| | - S. Claudia Didia
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
10
|
Pan Y, Wang Y, Wang Y, Xu S, Jiang F, Han Y, Hu M, Liu Z. Platelet-derived microvesicles (PMVs) in cancer progression and clinical applications. Clin Transl Oncol 2023; 25:873-881. [PMID: 36417084 DOI: 10.1007/s12094-022-03014-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Platelet-derived microvesicles (PMVs), the microvesicles with the highest concentration in the bloodstream, play a key role in the regulation of hemostasis, inflammation, and angiogenesis. PMVs have recently been identified as key factors in the link between platelets and cancer. PMVs bind to both cancer cells and nontransformed cells in the microenvironment of the tumor, and then transfer platelet-derived contents to the target cell. These contents have the potential to either stimulate or modulate the target cell's response. PMVs are encased in a lipid bilayer that contains surface proteins and lipids as well as components found inside the PMV. Each of these components participates in known and potential PMV roles in cancer. The complicated roles played by PMVs in the onset, development, and progression of cancer and cancer-related comorbidities are summarized in this study.
Collapse
Affiliation(s)
- Yan Pan
- Department of Blood Transfusion, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, 324000, Zhejiang, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yanzhong Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
11
|
Meng H, Chen Z, Chen L, Tang W, He F, Yan X, Lin X, Se X, Xie M, Li Z, Lu L, Yu X. An outbreak of Amanita exitialis poisoning. Clin Toxicol (Phila) 2023; 61:270-275. [PMID: 36919497 DOI: 10.1080/15563650.2022.2159830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND The mushroom Amanita exitialis is reported to cause acute liver injury. It is found in Southern China, and has been previously associated with a high incidence of mortality. METHODS We described a series of 10 patients with Amanita exitialis poisoning admitted to The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) in April 2022. Patient demographics, clinical features, laboratory results, therapeutic interventions, and outcome data were collected. RESULTS Among the 10 patients, 9 survived, while 1 died. Gastrointestinal symptoms were the first to appear (average latency period, 11 ± 4.2 h). Diarrhea was the most common clinical symptom (average duration, 4.4 days). Abdominal distention was an important sign, especially in severely-ill patients. Thrombocytopenia occurred on day 2 after mushroom ingestion and persisted for 3-4 days. Alanine aminotransferase and total bilirubin peaked on days 2-3. CONCLUSION Amanita exitialis poisoning is characterized by gastrointestinal symptoms and liver injury. In the patient who died, acute hepatic failure led to hepatic encephalopathy and cerebral edema. Abdominal distension accompanied by thrombocytopenia was common in critically ill patients in this outbreak.
Collapse
Affiliation(s)
- Hui Meng
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - ZhaoYin Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - LanChun Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - WeiXin Tang
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - Fang He
- Department of Health Management, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - XianRang Yan
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - XiaoHong Lin
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - XiaoLong Se
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - MingFei Xie
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - ZhanHan Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - LiJuan Lu
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| | - Xuetao Yu
- Department of Critical Care Medicine, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) (Longgang District People's Hospital of Shenzhen), Shenzhen, China
| |
Collapse
|
12
|
Gao Y, Li X, Qin Y, Men J, Ren J, Li X, Xu C, Li Q, Li Y, Cui W, Zhang S, Li L, Li Y, Zhang J, Liu L. MPs-ACT, an Assay to Evaluate the Procoagulant Activity of Microparticles. Clin Appl Thromb Hemost 2023; 29:10760296231159374. [PMID: 36843474 PMCID: PMC9972054 DOI: 10.1177/10760296231159374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
The procoagulant effect of microparticles (MPs) contributes to hypercoagulability-induced thrombosis. We provide preliminary findings of the MPs-Activated Clotting Time (MPs-ACT) assay to determine the procoagulant activity of MPs. MPs-rich plasma was obtained and recalcified. Changes in plasma viscoelasticity were evaluated and the time to the peak viscoelastic changes was defined as the MPs-ACT. MPs concentration was measured by flow cytometry. Coagulation products produced during plasma clotting were identified by fibrin and fibrinopeptide A. MPs were prepared in vitro and added to standard plasma to simulate pathological samples. In addition, reproducibility and sensitivity were evaluated. We confirmed the linear relationship between MPs-ACT and MP concentrations. Dynamic changes in fibrin production were depicted. We simulated the correlation between MPs-ACT and standard plasma containing MPs prepared in vitro. The reproducibility of high-value and low-value samples was 6.0% and 10.8%, respectively. MPs-ACT sensitively detected hypercoagulable samples from patients with pre-eclampsia, hip fractures, and lung tumors. MPs-ACT largely reflects the procoagulant effect of MPs. MPs-ACT sensitively and rapidly detects hypercoagulability with MPs-rich plasma. It may be promising for the diagnosis of hypercoagulable states induced by MPs.
Collapse
Affiliation(s)
- Yalong Gao
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Xiaotian Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jianlong Men
- Precision Medicine Center, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jing Ren
- Precision Medicine Center, Tianjin Medical University General
Hospital, Tianjin, China
| | - Xiaochun Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Chunlei Xu
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Qifeng Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Weiyun Cui
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Lei Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Yaohua Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Li Liu
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
- Jianning Zhang, Tianjin Neurological
Institute, Tianjin Medical University General Hospital, #154 Anshan Road,
Tianjin, 30052, China. Li Liu,
Tianjin Neurological Institute, Tianjin Medical University General Hospital,
#154 Anshan Road, Tianjin, 30052, China.
| |
Collapse
|
13
|
Selvadurai MV, Favaloro EJ, Chen VM. Mechanisms of Thrombosis in Heparin-Induced Thrombocytopenia and Vaccine-Induced Immune Thrombotic Thrombocytopenia. Semin Thromb Hemost 2023. [PMID: 36706782 DOI: 10.1055/s-0043-1761269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombotic thrombocytopenia (VITT) are rare, iatrogenic immune-mediated conditions with high rates of thrombosis-related morbidity and mortality. HIT is a long-recognized reaction to the administration of the common parenterally administered anticoagulant heparin (or its derivatives), while VITT is a new, distinct syndrome occurring in response to adenovirus-based vaccines against coronavirus disease 2019 and potentially other types of vaccines. A feature of both HIT and VITT is paradoxical thrombosis despite a characteristic low platelet count, mediated by the presence of platelet-activating antibodies to platelet factor 4. Several additional factors have also been suggested to contribute to clot formation in HIT and/or VITT, including monocytes, tissue factor, microparticles, endothelium, the formation of neutrophil extracellular traps, complement, procoagulant platelets, and vaccine components. In this review, we discuss the literature to date regarding mechanisms contributing to thrombosis in both HIT and VITT and explore the pathophysiological similarities and differences between the two conditions.
Collapse
Affiliation(s)
- Maria V Selvadurai
- The Alfred Hospital, Melbourne, VIC, Australia.,ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia.,School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.,Department of Haematology, Concord Repatriation General Hospital and NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
14
|
Aswad MH, Kissova J, Ovesna P, Říhová L, Penka M. JAK2V617F mutation and circulating extracellular vesicles in essential thrombocythemia. Clin Hemorheol Microcirc 2023; 84:359-368. [PMID: 37334581 DOI: 10.3233/ch-221678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The clinical course of essential thrombocythemia (ET) is complicated with thrombosis which significantly impacts patients' mortality. Studies have identified JAK2V617F mutation as an independent risk factor for thrombosis. Circulating extracellular vesicles (EVs) were evaluated in several studies regarding myeloproliferative neoplasms and thrombosis as potential biomarkers. The present study investigates the relationship between JAK2V617F mutation and EVs levels in 119 ET patients. Our analyses revealed that JAK2V617F-positive patients are at a significantly increased risk of thrombosis within five years before the ET diagnosis (hazard ratio [95% CI]: 11.9 [1.7-83.7], P = 0.013), and that JAK2V617F mutation is an independent risk factor for thrombosis at ET diagnosis or during the follow-up (hazard ratio [95% CI]: 3.56 [1.47-8.62], P = 0.005). ET patients have higher levels of platelet-EVs, erythrocyte-EVs and procoagulant activity of EVs than the healthy population. Absolute and relative counts of platelet-EVs are increased in the presence of JAK2V617F mutation (P = 0.018, P = 0.024, respectively). In conclusion, our results support the role of JAK2V617F mutation in the pathogenesis of thrombosis in essential thrombocythemia through enhancing platelet activation.
Collapse
Affiliation(s)
- Mohamed Hussam Aswad
- Department of Clinical Hematology, Faculty of Medicine, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jarmila Kissova
- Department of Clinical Hematology, Faculty of Medicine, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Ovesna
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Říhová
- Department of Clinical Hematology, Faculty of Medicine, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Penka
- Department of Clinical Hematology, Faculty of Medicine, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Abstract
The need for a more precise test that replicates the in vivo hemostatic conditions is increasingly being recognized. Up to now, the thrombin generation assay (TGA) has become the most reliable approach to evaluate the status of coagulation activation. The clinical potential for the TGA is most promising in the prediction of venous thromboembolism recurrence. However, there is currently an urgent need for a standardized global test that can reliably detect, predict and monitor coagulation disorders in both clinical and experimental studies. We have recently modified the TGA to analyze not only tissue factor-driven coagulation, but the intrinsic coagulation pathway as well. In the present review, we discuss different TG tests, emphasizing the requirement for a better understanding of the evaluation of distinct coagulation pathways using this technique, as well as the standardization and clinical validation.
Collapse
|
16
|
Megakaryocyte- and Platelet-Derived Microparticles as Novel Diagnostic and Prognostic Biomarkers for Immune Thrombocytopenia. J Clin Med 2022; 11:jcm11226776. [PMID: 36431253 PMCID: PMC9698595 DOI: 10.3390/jcm11226776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Altered cell-derived microparticles (MPs) have been reported in multiple autoimmune diseases. However, the roles of megakaryocyte- and platelet-derived MPs (MKMPs and PMPs) in immune thrombocytopenia (ITP) have not been investigated. In this study, we examined plasma MKMP and PMP levels in patients with ITP and evaluated their potential diagnostic values. Plasma MKMP and PMP levels were analyzed by flow cytometry in a discovery set of ITP patients (n = 78), non-immune thrombocytopenia (TP) patients (n = 69), and age- and gender-matched healthy controls (n = 88). Samples from a therapy set of ITP patients (n = 21) were used to assess the response to thrombopoietin receptor agonist (TPO-RA) treatment. Spearman correlation analysis was performed between MP levels and disease parameters. Receiver operator characteristic (ROC) curves were generated to evaluate the diagnostic values of the MPs. We found that plasma MKMP and PMP levels were significantly lower in ITP patients than those in healthy controls (p values < 0.0001) but higher than in those in TP patients (p < 0.002 and p < 0.0002, respectively). After normalization to platelet counts, PMP/Platelet ratios in ITP patients were higher than those in TP patients and healthy controls (p values < 0.001). PMP/Platelet ratios had a diagnostic value for ITP (area under the curve = 0.808, p < 0.0001) with 73.1% sensitivity and 77.3% specificity. MKMP levels can be used to discriminate ITP from TP with a cut-off value of 112.5 MPs/μL and a sensitivity of 74.4%. Moreover, both MKMP and PMP levels were elevated in ITP patients who responded to TPO-RA treatment. Plasma PMP levels positively correlated with platelet counts in the responders (r = 0.558, p < 0.01). Our results indicate that plasma MKMP and PMP levels are decreased in ITP patients and that plasma MKMP and PMP levels may serve as biomarkers for ITP diagnosis and prediction of TPO-RA treatment response.
Collapse
|
17
|
Chen Y, Liu J, Su Y, Zhao H, Zhao Y, Wen M, Lu S, Cao X, Zhang W, Liu L, Wu J. Annexin V - and tissue factor + microparticles as biomarkers for predicting deep vein thrombosis in patients after joint arthroplasty. Clin Chim Acta 2022; 536:169-179. [PMID: 36191610 DOI: 10.1016/j.cca.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Venous thromboembolism (VTE) is a common and severe complication of joint arthroplasty. Microparticles (MPs) containing phosphatidylserine (PS) and tissue factor (TF) can trigger coagulation in VTE. This study aims to measure and compare MP levels in joint arthroplasty patients with and without VTE. METHODS This prospective cohort study enrolled 181 patients who underwent joint arthroplasty. Ultrasound examination was used to diagnose VTE on preoperative day 0 and postoperative day 6. MPs were analysed using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. The levels of platelet-derived microparticles (PMPs), endothelial cell-derived microparticles (EMPs), granulocyte-derived microparticles (GMPs), red cell-derived microparticles (RMPs), monocyte-derived microparticles (MMPs), Annexin V+ MPs (AV+ MPs), and tissue factor+ MPs (TF+ MPs) derived from five kinds of MPs were measured on day 0 (before surgery), 1, 2, 3, 4, 5, and 6 after surgery. RESULTS The levels of AV-TF+ EMPs and AV-TF+ MMPs were significantly increased in patients with VTE on postoperative day 5 compared to those without VTE (P=0.031 and P=0.031, respectively). CONCLUSION AV-TF+ MPs may indicate the development of VTE and serve as predictive markers in joint arthroplasty patients.
Collapse
Affiliation(s)
- Yuying Chen
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, P.R.China
| | - Jian Liu
- Adult reconstruction department, Beijing Jishuitan Hospital, Beijing, P.R.China
| | - Yu Su
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, P.R.China
| | - Huiru Zhao
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, P.R.China
| | - Yujing Zhao
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, P.R.China
| | - Meng Wen
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, P.R.China
| | - Shan Lu
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, P.R.China
| | - Xiangyu Cao
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, P.R.China
| | - Wenjie Zhang
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, P.R.China
| | - Lei Liu
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Hubei, P.R.China
| | - Jun Wu
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, P.R.China; Department of Clinical Laboratory, Beijing Jishuitan Hospital, Beijing, P.R.China.
| |
Collapse
|
18
|
Antonova OA, Golubeva NV, Yakushkin VV, Zyuryaev IT, Krivosheeva EN, Komarov AL, Martynyuk TV, Mazurov AV. [Coagulation activity of circulating membrane microparticles in patients with cardiovascular diseases]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:288-296. [PMID: 36005847 DOI: 10.18097/pbmc20226804288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane microparticles (MP) are released by activated or damaged cells and are able to accelerate blood clotting (coagulation). MP possess coagulation activity since all of them contain on their surface phosphatidylserine (PS), a substrate for the assembly of coagulation complexes, and some of them tissue factor (TF), the primary initiator of coagulation cascade reactions. We compared the coagulation activity and amount of MP in the blood of healthy donors (n=34) and patients with myocardial infarction (MI) (n=32), advanced atherosclerosis (AA) (n=32) and idiopathic pulmonary arterial hypertension (IPAH) (n=19). Total MP fraction was obtained from blood plasma by sedimentation at 20000 g, 30 min. The coagulation activity of PM isolated from 100 μl of donor and patient plasma was determined using a modified recalcification test. MP were added to substrate plasma devoid of endogenous MF, plasma was recalcified, and clotting was recorded by changes in optical density (A450), determining lag phase (min) and maximum rate (Vmax, %A450/min). MP were counted by flow cytometry as PS+ particles (lactadgerin-FITC staining) smaller than 1 μm and their concentration was expressed as 105 MP/μl plasma. MP in all patient groups accelerated plasma clotting more effectively than donor MP. Lag phase compared with donors (11.8 [11.0-13.1] median and interquartile range) was shorter in patients with AA (8.8 [7.0-10.3], p.
Collapse
Affiliation(s)
- O A Antonova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia
| | - N V Golubeva
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia
| | - V V Yakushkin
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia
| | - I T Zyuryaev
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia
| | - E N Krivosheeva
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia
| | - A L Komarov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia
| | - T V Martynyuk
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia
| | - A V Mazurov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
19
|
Touw CE, Nemeth B, Lijfering WM, van Adrichem RA, Wilsgård L, Latysheva N, Ramberg C, Nelissen RGHH, Hansen J, Cannegieter SC. Effect of lower-leg trauma and knee arthroscopy on procoagulant phospholipid-dependent activity. Res Pract Thromb Haemost 2022; 6:e12729. [PMID: 35702586 PMCID: PMC9175257 DOI: 10.1002/rth2.12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lower-leg injury and knee arthroscopy are both associated with venous thromboembolism (VTE). The mechanism of VTE in both situations is unknown, including the role of procoagulant microparticles. This may provide useful information for individualizing thromboprophylactic treatment in both patient groups. Objective We aimed to study the effect of (1) lower-leg trauma and (2) knee arthroscopy on procoagulant phospholipid-dependent (PPL) activity plasma levels. Methods POT-(K)CAST trial participants who did not develop VTE were randomly selected for the current study. Plasma was collected shortly after lower-leg trauma or before and after knee arthroscopy. For aim 1, samples of 67 patients with lower-leg injury were compared with control samples (preoperative samples of 74 patients undergoing arthroscopy). Linear regression was used to obtain mean ratios (natural logarithm retransformed data), adjusted for age, sex, body mass index, infections, and comorbidities. For aim 2, pre- and postoperative samples of 49 patients undergoing arthroscopy were compared using paired t tests. PPL activity was measured using modified activated factor X-dependent PPL clotting assay. Results For aim 1, PPL activity levels were almost threefold higher in patients with lower-leg injury compared with controls, that is, mean ratio, 2.82 (95% confidence interval [CI], 1.98-4.03). For aim 2, postoperative PPL activity levels did not change significantly, that is, mean change, -0.72 mU/mL (95% CI, -2.03 to 0.59). Conclusion Lower-leg trauma was associated with increased plasma levels of PPL activity, in contrast to knee arthroscopy. Lower-leg trauma triggers the release of procoagulant microparticles.
Collapse
Affiliation(s)
- Carolina E. Touw
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of OrthopaedicsLeiden University Medical CenterLeidenThe Netherlands
| | - Banne Nemeth
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of OrthopaedicsLeiden University Medical CenterLeidenThe Netherlands
| | - Willem M. Lijfering
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Raymond A. van Adrichem
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of OrthopaedicsLeiden University Medical CenterLeidenThe Netherlands
| | - Line Wilsgård
- Thrombosis Research Center (TREC)The Arctic University of NorwayTromsoNorway
| | - Nadezhda Latysheva
- Thrombosis Research Center (TREC)The Arctic University of NorwayTromsoNorway
| | - Cathrine Ramberg
- Thrombosis Research Center (TREC)The Arctic University of NorwayTromsoNorway
| | | | - John‐Bjarne Hansen
- Thrombosis Research Center (TREC)The Arctic University of NorwayTromsoNorway
- Division of internal medicineUniversity Hospital of North NorwayTromsøNorway
| | - Suzanne C. Cannegieter
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Internal MedicineSection of Thrombosis and HaemostasisLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
20
|
Verso M, Agnelli G, Munoz A, Connors JM, Sanchez O, Huisman M, Brenner B, Gussoni G, Cohen AT, Becattini C. Recurrent venous thromboembolism and major bleeding in patients with localised, locally advanced or metastatic cancer: an analysis of the Caravaggio study. Eur J Cancer 2022; 165:136-145. [DOI: 10.1016/j.ejca.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 01/01/2023]
|
21
|
Campello E, Radu CM, Simion C, Spiezia L, Bulato C, Gavasso S, Tormene D, Perin N, Turatti G, Simioni P. Longitudinal Trend of Plasma Concentrations of Extracellular Vesicles in Patients Hospitalized for COVID-19. Front Cell Dev Biol 2022; 9:770463. [PMID: 35111751 PMCID: PMC8801799 DOI: 10.3389/fcell.2021.770463] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Plasma concentrations of extracellular vesicles (EVs) originating from cells involved in COVID-19-associated coagulopathy (CAC), their longitudinal trend and association with clinical outcomes were evaluated. Blood samples of consecutive COVID-19 patients admitted to a medical Unit were longitudinally collected within 48 h of admission, at discharge and 30 days post-discharge. EVs were analyzed using high sensitivity flow cytometry and phospholipid-dependent clotting time (PPL). The following EVs were measured: endothelium-, platelet-, leukocyte-derived, bearing tissue factor (TF)+, angiotensin-converting enzyme (ACE2)+, platelet-derived growth factor receptor-β (PDGF-β)+ and SARS-CoV-2-nucleoprotein (NP)+. 91 patients were recruited for baseline EV analysis (mean age 67 ± 14 years, 50.5% male) and 48 underwent the longitudinal evaluation. From baseline to 30-days post-discharge, we observed significantly decreased plasma concentrations of endothelium-derived EVs (E-Selectin+), endothelium-derived bearing TF (E-Selectin+ TF+), endothelium-derived bearing ACE2 (E-Selectin+ACE2+) and leukocyte-EVs bearing TF (CD45+TF+), p < 0.001, p = 0.03, p = 0.001, p = 0.001, respectively. Conversely, platelet-derived (P-Selectin+) and leukocyte-derived EVs (CD45+) increased from baseline to 30-days post-discharge (p = 0.038 and 0.032, respectively). EVs TF+, ACE2+, PDGF-β+, and SARS-CoV-2-NP+ did not significantly change during the monitoring. PPL increased from baseline to 30-days post-discharge (+ 6.3 s, p = 0.006). P-Selectin + EVs >1,054/µL were associated with thrombosis (p = 0.024), E-Selectin + EVs ≤531/µL with worsening/death (p 0.026) and 30-days P-Selectin+ and CD45 + EVs with persistent symptoms (p < 0.0001). We confirmed increased EVs originating from cells involved in CAC at admission and discharge. EVs derived from activated pericytes and expressing SARS-CoV-2-NP were also detected. 30-days post-discharge, endothelium-EVs decreased, while platelet- and leukocyte-EVs further increased, indicating that cellular activation persists long after the acute phase.
Collapse
Affiliation(s)
- Elena Campello
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Claudia Maria Radu
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Chiara Simion
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Luca Spiezia
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Cristiana Bulato
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Sabrina Gavasso
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Daniela Tormene
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Nicola Perin
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Giacomo Turatti
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| |
Collapse
|
22
|
The Pathophysiology of Portal Vein Thrombosis in Cirrhosis: Getting Deeper into Virchow's Triad. J Clin Med 2022; 11:jcm11030800. [PMID: 35160251 PMCID: PMC8837039 DOI: 10.3390/jcm11030800] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Portal vein thrombosis (PVT) is a common complication among patients with cirrhosis. However, its pathophysiology is not well established and there are currently very few predictive factors, none of which are actually useful, from a clinical perspective. The contribution of each of the vertices of Virchow’s triad, e.g., blood hypercoagulability, blood flow, and portal vein endothelial damage in the development of PVT is not clear. In this review, we aim to recapitulate the latest studies on the field of PVT development in order to understand its mechanisms and discuss some of the future directions in the study of this important complication of cirrhosis.
Collapse
|
23
|
Moreira R, Mendonça LS, Pereira de Almeida L. Extracellular Vesicles Physiological Role and the Particular Case of Disease-Spreading Mechanisms in Polyglutamine Diseases. Int J Mol Sci 2021; 22:ijms222212288. [PMID: 34830171 PMCID: PMC8621536 DOI: 10.3390/ijms222212288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Recent research demonstrated pathological spreading of the disease-causing proteins from one focal point across other brain regions for some neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. Spreading mediated by extracellular vesicles is one of the proposed disease-spreading mechanisms. Extracellular vesicles are cell membrane-derived vesicles, used by cells for cell-to-cell communication and excretion of toxic components. Importantly, extracellular vesicles carrying pathological molecules, when internalized by "healthy" cells, may trigger pathological pathways and, consequently, promote disease spreading to neighboring cells. Polyglutamine diseases are a group of genetic neurodegenerative disorders characterized by the accumulation of mutant misfolded proteins carrying an expanded tract of glutamines, including Huntington's and Machado-Joseph disease. The pathological spread of the misfolded proteins or the corresponding mutant mRNA has been explored. The understanding of the disease-spreading mechanism that plays a key role in the pathology progression of these diseases can result in the development of effective therapeutic approaches to stop disease progression, arresting the spread of the toxic components and disease aggravation. Therefore, the present review's main focus is the disease-spreading mechanisms with emphasis on polyglutamine diseases and the putative role played by extracellular vesicles in this process.
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| | - Luís Pereira de Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| |
Collapse
|
24
|
Brøns N, Leinøe E, Salado-Jimena JA, Rossing M, Ostrowski SR. Levels of procoagulant microparticles expressing phosphatidylserine contribute to bleeding phenotype in patients with inherited thrombocytopenia. Blood Coagul Fibrinolysis 2021; 32:480-490. [PMID: 34475331 DOI: 10.1097/mbc.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inherited thrombocytopenia is a heterogeneous group of hereditary disorders with varying bleeding tendencies, not simply related to platelet count. Platelets transform into different subpopulations upon stimulation, including procoagulant platelets and platelet microparticles (PMPs), which are considered critical for haemostasis. We aimed to investigate whether abnormalities in PMP and procoagulant platelet function were associated with the bleeding phenotype of inherited thrombocytopenia patients. We enrolled 53 inherited thrombocytopenia patients. High-throughput sequencing of 36 inherited thrombocytopenia related genes was performed in all patients and enabled a molecular diagnosis in 57%. Bleeding phenotype was evaluated using the ISTH bleeding assessment tool, dividing patients into bleeding (n = 27) vs. nonbleeding (n = 26). Unstimulated and ADP, TRAP or collagen-stimulated PMP and procoagulant platelet functions were analysed by flow cytometry using antibodies against granulophysin (CD63), P-selectin (CD62P), activated GPIIb/IIIa (PAC-1) and a marker for phosphatidylserine expression (lactadherin). Procoagulant platelets were measured in response to collagen stimulation. An in-house healthy reference level was available. Overall, higher levels of activated platelets, PMPs and procoagulant platelets were found in nonbleeding patients compared with the reference level. Nonbleeding patients had higher proportions of phosphatidylserine and PMPs compared with bleeding patients and the reference level, in response to different stimulations. Interestingly, this finding of high proportions of phosphatidylserine and PMPs was limited to PMPs, and not present in procoagulant platelets or platelets. Our findings indicate that nonbleeding inherited thrombocytopenia patients have compensatory mechanisms for improved platelet subpopulation activation and function, and that generation of phosphatidylserine expressing PMPs could be a factor determining bleeding phenotype in inherited thrombocytopenia.
Collapse
Affiliation(s)
- Nanna Brøns
- Department of Hematology
- Department of Clinical Immunology
| | | | | | - Maria Rossing
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, København, Denmark
| | | |
Collapse
|
25
|
D'Ascenzo F, Femminò S, Ravera F, Angelini F, Caccioppo A, Franchin L, Grosso A, Comità S, Cavallari C, Penna C, De Ferrari GM, Camussi G, Pagliaro P, Brizzi MF. Extracellular vesicles from patients with Acute Coronary Syndrome impact on ischemia-reperfusion injury. Pharmacol Res 2021; 170:105715. [PMID: 34111564 DOI: 10.1016/j.phrs.2021.105715] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The relevance of extracellular vesicles (EV) as mediators of cardiac damage or recovery upon Ischemia Reperfusion Injury (IRI) and Remote Ischemic PreConditioning (RIPC) is controversial. This study aimed to investigate whether serum-derived EV, recovered from patients with Acute Coronary Syndrome (ACS) and subjected to the RIPC or sham procedures, may be a suitable therapeutic approach to prevent IRI during Percutaneous-Coronary-Intervention (PCI). A double-blind, randomized, sham-controlled study (NCT02195726) has been extended, and EV were recovered from 30 patients who were randomly assigned (1:1) to undergo the RIPC- (EV-RIPC) or sham-procedures (EV-naive) before PCI. Patient-derived EV were analyzed by TEM, FACS and western blot. We found that troponin (TnT) was enriched in EV, compared to healthy subjects, regardless of diagnosis. EV-naive induced protection against IRI, both in-vitro and in the rat heart, unlike EV-RIPC. We noticed that EV-naive led to STAT-3 phosphorylation, while EV-RIPC to Erk-1/2 activation in the rat heart. Pre-treatment of the rat heart with specific STAT-3 and Erk-1/2 inhibitors led us to demonstrate that STAT-3 is crucial for EV-naive-mediated protection. In the same model, Erk-1/2 inhibition rescued STAT-3 activation and protection upon EV-RIPC treatment. 84 Human Cardiovascular Disease mRNAs were screened and DUSP6 mRNA was found enriched in patient-derived EV-naive. Indeed, DUSP6 silencing in EV-naive prevented STAT-3 phosphorylation and cardio-protection in the rat heart. This analysis of ACS-patients' EV proved: (i) EV-naive cardio-protective activity and mechanism of action; (ii) the lack of EV-RIPC-mediated cardio-protection; (iii) the properness of the in-vitro assay to predict EV effectiveness in-vivo.
Collapse
Affiliation(s)
- Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Saveria Femminò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesco Ravera
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Caccioppo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alberto Grosso
- Division of Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy.
| | | |
Collapse
|
26
|
Platelets and extracellular vesicles and their cross talk with cancer. Blood 2021; 137:3192-3200. [PMID: 33940593 DOI: 10.1182/blood.2019004119] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Platelets play significant and varied roles in cancer progression, as detailed throughout this review series, via direct interactions with cancer cells and by long-range indirect interactions mediated by platelet releasates. Microvesicles (MVs; also referred to as microparticles) released from activated platelets have emerged as major contributors to the platelet-cancer nexus. Interactions of platelet-derived MVs (PMVs) with cancer cells can promote disease progression through multiple mechanisms, but PMVs also harbor antitumor functions. This complex relationship derives from PMVs' binding to both cancer cells and nontransformed cells in the tumor microenvironment and transferring platelet-derived contents to the target cell, each of which can have stimulatory or modulatory effects. MVs are extracellular vesicles of heterogeneous size, ranging from 100 nm to 1 µm in diameter, shed by living cells during the outward budding of the plasma membrane, entrapping local cytosolic contents in an apparently stochastic manner. Hence, PMVs are encapsulated by a lipid bilayer harboring surface proteins and lipids mirroring the platelet exterior, with internal components including platelet-derived mature messenger RNAs, pre-mRNAs, microRNAs, and other noncoding RNAs, proteins, second messengers, and mitochondria. Each of these elements engages in established and putative PMV functions in cancer. In addition, PMVs contribute to cancer comorbidities because of their roles in coagulation and thrombosis and via interactions with inflammatory cells. However, separating the effects of PMVs from those of platelets in cancer contexts continues to be a major hurdle. This review summarizes our emerging understanding of the complex roles of PMVs in the development and progression of cancer and cancer comorbidities.
Collapse
|
27
|
Abstract
Circulating microparticles in human plasma may play a significant role in thrombogenesis because they carry the initiator of blood coagulation, tissue factor. Microparticles in blood are derived from diverse cell types, including erythrocytes, endothelial cells and platelets. Thrombin generation is an important part of the coagulation system and might be influenced by the presence of microparticles in the circulation. With this study, we determined the contribution of microparticles to increased thrombin generation in plasma samples received for thrombophilia workup and compare that with normal plasma. Microparticles were isolated from 50 plasma samples with increased thrombin generation and 20 plasma samples with normal thrombin generation, using filtration. Thrombin generation assay were performed by adding a low concentration of tissue factor-containing phospholipids and a fluorescence substrate for thrombin formation to plasma samples and measuring fluorescence at 1-min intervals over a period of 90 min on all samples (with and without the presence of microparticles). The peak thrombin, velocity-index and area under the curve were calculated. Microparticles contribute to the different parameters in samples with increased thrombin generation as follows: 50 ± 19% for peak thrombin, 58 ± 24% for velocity-index and 35 ± 13% for area under the curve. Microparticles did not contribute to thrombin generation in plasma samples with normal thrombin generation. Microparticles play a significant role in coagulation and contribute largely to increased thrombin generation in plasma; however, microparticles do not contribute to coagulation in the plasma of participants with normal thrombin generation.
Collapse
|
28
|
Shi P, Zhou D, Zhu Y, Peng B, Shao N, Zan X. Thrombin-Loaded TA-CaCO 3 Microspheres as a Budget, Adaptable, and Highly Efficient Hemostatic. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengzhong Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Daozhen Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Yaxin Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
| | - Nannan Shao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, P.R. China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P.R. China
| |
Collapse
|
29
|
Thietart S, Rautou PE. Extracellular vesicles as biomarkers in liver diseases: A clinician's point of view. J Hepatol 2020; 73:1507-1525. [PMID: 32682050 DOI: 10.1016/j.jhep.2020.07.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles are membrane-bound vesicles containing proteins, lipids, RNAs and microRNAs. They can originate from both healthy and stressed cells, and provide a snapshot of the cell of origin in physiological and pathological circumstances. Various processes that may give rise to the release of extracellular vesicles occur in liver diseases, including hepatocyte apoptosis, hepatic stellate cell activation, liver innate immune system activation, systemic inflammation, and organelle dysfunction (mitochondrial dysfunction and endoplasmic reticulum stress). Numerous studies have therefore investigated the potential role of extracellular vesicles as biomarkers in liver diseases. This review provides an overview of the methods that can be used to measure extracellular vesicle concentrations in clinical settings, ranging from plasma preparation to extracellular vesicle measurement techniques, as well as looking at the challenges of using extracellular vesicles as biomarkers. We also provide a comprehensive review of studies that test extracellular vesicles as diagnostic, severity and prognostic biomarkers in various liver diseases, including non-alcoholic and alcoholic steatohepatitis, viral hepatitis B and C infections, cirrhosis, primary liver cancers, primary sclerosing cholangitis and acute liver failure. In particular, extracellular vesicles could be useful tools to evaluate activity and fibrosis in non-alcoholic fatty liver disease, predict risk of hepatitis B virus reactivation, predict complications and mortality in cirrhosis, detect early hepatocellular carcinoma, detect malignant transformation in primary sclerosing cholangitis and predict outcomes in acute liver failure. While most studies draw on data derived from pilot studies, which still require clinical validation, some extracellular vesicle subpopulations have already been evaluated in solid prospective studies.
Collapse
Affiliation(s)
- Sara Thietart
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, F-75018 Paris, France
| | - Pierre-Emmanuel Rautou
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, F-75018 Paris, France; Service d'Hépatologie, DHU Unity, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, AP-HP, Clichy, France; Centre de Référence des Maladies Vasculaires du Foie, French Network for Rare Liver Diseases (FILFOIE), European Reference Network (ERN) 'Rare-Liver'.
| |
Collapse
|
30
|
Skinner S, Ryan ED, Stafford HC, McMurray RG, Key NS, Mooberry MJ. An exploratory study of the effects of strenuous exercise on markers of coagulation activation, circulating microparticles, and inflammation in sickle cell trait. ACTA ACUST UNITED AC 2020; 1:251-254. [PMID: 33225322 PMCID: PMC7664995 DOI: 10.1002/jha2.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
This exploratory study evaluated the effect of intense exercise on biomarkers of inflammation and coagulation activation in subjects with and without sickle cell trait (SCT). Fifteen healthy African American men (18‐35 years, 5 SCT, 10 control) completed a strenuous exercise protocol. Microparticle‐associated prothrombinase and tissue factor activities, as well as soluble VCAM, total white cell and monocyte count increased transiently in all subjects following exercise. In the SCT group, exercise resulted in increased d‐dimer, erythrocyte phosphatidylserine exposure, as well as increased circulating erythrocyte‐ and endothelial‐derived microparticle numbers. These alterations could contribute to exercise‐related complications in people with SCT.
Collapse
Affiliation(s)
- Sarah Skinner
- Hematology/Oncology Division and UNC Blood Research Center University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Eric D Ryan
- Department of Exercise and Sport Science University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Harry C Stafford
- Departments of Family Medicine and Orthopaedics University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Robert G McMurray
- Department of Exercise and Sport Science University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Nigel S Key
- Hematology/Oncology Division and UNC Blood Research Center University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Micah J Mooberry
- Hematology/Oncology Division and UNC Blood Research Center University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
31
|
Kim AS, Khorana AA, McCrae KR. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res 2020; 225:33-53. [PMID: 32645431 PMCID: PMC8020882 DOI: 10.1016/j.trsl.2020.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer-associated thrombosis is a leading cause of non-cancer death in cancer patients and is comprised of both arterial and venous thromboembolism (VTE). There are multiple risk factors for developing VTE, including cancer type, stage, treatment, and other medical comorbidities, which suggests that the etiology of thrombosis is multifactorial. While cancer-associated thrombosis can be treated with anticoagulation, benefits of therapy must be balanced with the increased bleeding risks seen in patients with cancer. Although risk models exist for primary and recurrent VTE, additional predictors are needed to improve model performance and discrimination of high-risk patients. This review will outline the diverse mechanisms driving thrombosis in cancer patients, as well as provide an overview of biomarkers studied in thrombosis risk and important considerations when selecting candidate biomarkers.
Collapse
Affiliation(s)
- Ann S Kim
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Alok A Khorana
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Keith R McCrae
- Taussig Cancer Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
32
|
Hamali HA, Mobarki AA, Akhter MS, Saboor M, Madkhali AM, Halawani AJ, Hakami AM, Eisa ZM, Dobie G, Hobani Y. Elevated levels of procoagulant microvesicles in patients with dengue fever. Future Virol 2020. [DOI: 10.2217/fvl-2020-0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: The levels of procoagulant microvesicles (MVs) and tissue factor (TF)-bearing MVs may be increased in many conditions, including dengue fever (DF). This study aimed to measure the levels of MVs and TF-bearing MVs in patients with DF and matched healthy controls. Materials & methods: Levels of MVs and TF-bearing MVs in the plasma of patients with DF and matched healthy controls were measured using functional assay. Results: The patient group had significantly elevated levels of MVs (p < 0.001) and slightly increased levels of TF-bearing MVs (p = 0.454) compared with the matched healthy controls. Conclusion: Elevated levels of MVs and TF-bearing MVs could be used as biomarkers to evaluate the hemostatic function of patients with DF.
Collapse
Affiliation(s)
- Hassan A Hamali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Mohammad S Akhter
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Muhammad Saboor
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
- Medical Research Center, Jazan University, Gizan, Saudi Arabia
| | - Aymen M Madkhali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Amr J Halawani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | | | - Zaki M Eisa
- Saudi Centre for Disease prevention & Control, Gizan, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Yahya Hobani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| |
Collapse
|
33
|
Badimon L, Suades R, Vilella-Figuerola A, Crespo J, Vilahur G, Escate R, Padro T, Chiva-Blanch G. Liquid Biopsies: Microvesicles in Cardiovascular Disease. Antioxid Redox Signal 2020; 33:645-662. [PMID: 31696726 DOI: 10.1089/ars.2019.7922] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Circulating microvesicles (cMV) are small (0.1-1 μm) phospholipid-rich blebs released by almost all cell types, and their release increases with cell activation and injury, thus reflecting the state of the cell from which they are originated. Microvesicles (MV) are found in the bloodstream, and they affect the phenotype of recipient cells, after local or systemic circulation, by intercellular transfer of their molecular content. Recent Advances: Several studies suggest the use of cell-specific MV subpopulations as predictive biomarkers for cardiovascular diseases (CVDs) at different stages and degrees of severity. In this review, we describe the state of the art of cMV as noninvasive surrogate biomarkers of vascular injury and dysfunction correlated with poor clinical outcomes in CVD. Critical Issues: Despite the growing body of evidence supporting the importance of cMV as hallmarks of CVD and their utility as biomarkers of CVD, the specific roles of each phenotype of cMV in CVD burden and prognosis still remain to be elucidated and validated in large cohorts. In addition, the development of standardized and reproducible techniques is required to be used as biomarkers for disease progression in the clinical setting. Future Directions: A multipanel approach with specific cMV phenotypes, added to current biomarkers and scores, will undoubtedly provide unique prognostic information to stratify patients for appropriate therapy on the basis of their risk of atherothrombotic disease and will open a new research area as therapeutic targets for CVD. MV will add to the implementation of precision medicine by helping the cellular and molecular characterization of CVD patients.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,Cardiology Unit, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alba Vilella-Figuerola
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rafael Escate
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| |
Collapse
|
34
|
Fouassier M, Babuty A, Debord C, Béné MC. Platelet immunophenotyping in health and inherited bleeding disorders, a review and practical hints. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:464-475. [PMID: 32516490 DOI: 10.1002/cyto.b.21892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Inherited platelet function disorders are rare hemorrhagic diseases. The gold standard for their exploration is optical aggregometry; however, investigations by flow cytometry (FCM) are being increasingly used. In this review, the physiology of platelets is first recalled, setting the stage for the compartments of platelets that can be apprehended by specific and appropriate labeling. As this requires some pre-analytical precautions and specific analytical settings, a second part focuses on these characteristic aspects, based on literature and on the authors' experience in the field, for qualitative or quantitative explorations. Membrane labeling with antibodies to CD42a or CD41, respectively, useful to assess the genetic-related defects of Glanzmann thrombocytopenia and Bernard Soulier syndrome are then described. Platelet degranulation disorders are detailed in the next section, as they can be explored, upon platelet activation, by measuring the expression of surface P-Selectin (CD62P) or CD63. Mepacrin uptake and release after activation is another test allowing to explore the function of dense granules. Finally, the flip-flop anomaly related to Scott syndrome is depicted. Tables summarizing possible FCM assays, and characteristic histograms are provided as reference for flow laboratories interested in developing platelet exploration.
Collapse
Affiliation(s)
- Marc Fouassier
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Antoine Babuty
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Camille Debord
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Marie C Béné
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| |
Collapse
|
35
|
Lipets EN, Antonova OA, Shustova ON, Losenkova KV, Mazurov AV, Ataullakhanov FI. Use of Thrombodynamics for revealing the participation of platelet, erythrocyte, endothelial, and monocyte microparticles in coagulation activation and propagation. PLoS One 2020; 15:e0227932. [PMID: 32469873 PMCID: PMC7259734 DOI: 10.1371/journal.pone.0227932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVE For many pathological states, microparticles are supposed to be one of the causes of hypercoagulation. Although there are some indirect data about microparticles participation in coagulation activation and propagation, the integral hemostasis test Thrombodynamics allows to measure micropaticles participation in these two coagulation phases directly. Demonstrates microparticles participation in coagulation activation by influence on the appearance of coagulation centres in the plasma volume and the rate of clot growth from the surface with immobilized tissue factor.Methods: Microparticles were obtained from platelets and erythrocytes by stimulation with thrombin receptor-activating peptide (SFLLRN) and calcium ionophore (A23187), respectively, from monocytes, endothelial HUVEC culture and monocytic THP cell culture by stimulation with lipopolysaccharides. Microparticles were counted by flow cytometry and titrated in microparticle-depleted normal plasma in the Thrombodynamics test. RESULTS Monocyte microparticles induced the appearance of clotting centres through the TF pathway at concentrations approximately 100-fold lower than platelet and erythrocyte microparticles, which activated plasma by the contact pathway. For endothelial microparticles, both activation pathways were essential, and their activity was intermediate. Monocyte microparticles induced plasma clotting by the appearance of hundreds of clots with an extremely slow growth rate, while erythrocyte microparticles induced the appearance of a few clots with a growth rate similar to that from surface covered with high-density tissue factor. Patterns of clotting induced by platelet and endothelial microparticles were intermediate. Platelet, erythrocyte and endothelial microparticles impacts on the rate of clot growth from the surface with tissue factor did not differ significantly within the 0-200·103/ul range of microparticles concentrations. However, at concentrations greater than 500·103/ul, erythrocyte microparticles increased the stationary clot growth rate to significantly higher levels than do platelet microparticles or artificial phospholipid vesicles consisting of phosphatidylcholine and phosphatidylserine. CONCLUSION Microparticles of different origins demonstrated qualitatively different characteristics related to coagulation activation and propagation.
Collapse
Affiliation(s)
- E. N. Lipets
- Department of Biophysics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
| | - O. A. Antonova
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - O. N. Shustova
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - K. V. Losenkova
- Medicity Research Laboratory, University of Turku, Turku, Finland
| | - A. V. Mazurov
- Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - F. I. Ataullakhanov
- Department of Biophysics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This review summarizes the effects of microparticles and exosomes in the progression of atherosclerosis and the prospect for their diagnostic and therapeutic potentials. RECENT FINDINGS Microparticles and exosomes can induce endothelial dysfunction, vascular inflammation, coagulation, thrombosis, and calcification via their components of proteins and noncoding RNAs, which may promote the progression of atherosclerosis. The applications of microparticles and exosomes become the spotlight of clinical diagnosis and therapy. Microparticles and exosomes are members of extracellular vesicles, which are generated in various cell types by different mechanisms of cell membrane budding and multivesicular body secretion, respectively. They are important physiologic pathways of cell-to-cell communication in vivo and act as messengers accelerating or alleviating the process of atherosclerosis. Microparticles and exosomes may become diagnostic biomarkers and therapeutic approaches of atherosclerosis.
Collapse
|
37
|
Platelet factor 4 and β-thromboglobulin mRNAs in circulating microparticles of trauma patients as diagnostic markers for deep vein thrombosis. J Thromb Thrombolysis 2020; 50:525-532. [PMID: 32347511 DOI: 10.1007/s11239-020-02124-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deep vein thrombosis (DVT) is a common complication after trauma. The development of markers to predict DVT in trauma patients is needed, and circulating microparticles (MPs) and their contents are possible candidates. In this study, we aimed to identify platelet factor 4 (PF4) and β-thromboglobulin (β-TG) mRNAs in circulating MPs as potential markers for DVT diagnosis in trauma patients. Fifteen trauma patients diagnosed with DVT and fifteen matched patients without DVT were included in this study. Fifteen healthy volunteers also were included as controls. Circulating MPs were obtained from the plasma of all study subjects. Annexin V+ MPs and platelet-derived MPs (PMPs) were quantified using flow cytometry. PF4 and β-TG mRNAs in MPs were determined by qPCR, and the common logarithm of relative quantitation (RQ) was calculated using the comparative Ct method. Receiver-operating characteristic (ROC) curves were performed to analyze the diagnostic value of PF4 and β-TG mRNAs. No significant differences were found in Annexin V+ MPs and PMPs levels between trauma patients with and without DVT. However, both PF4 and β-TG mRNAs in MPs from the DVT group were significantly higher than the non-DVT group and healthy controls (P = 0.014 for PF4, P = 0.010 for β-TG). The ROC curve analysis showed that both the PF4 mRNA (area-under curve (AUC) 0.756, P = 0.017) and the β-TG mRNA (AUC 0.751, P = 0.019) had a positive predictive value for DVT. This finding indicates that the PF4 and β-TG mRNAs in MPs may be used as potential biomarkers for DVT diagnosis in trauma patients.
Collapse
|
38
|
Perez-Toledo M, Beristain-Covarrubias N. A new player in the game: platelet-derived extracellular vesicles in dengue hemorrhagic fever. Platelets 2020; 31:412-414. [PMID: 32310724 DOI: 10.1080/09537104.2020.1755031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thrombocytopenia and vascular leakage are clinical hallmarks in dengue hemorrhagic fever. Sung et al. present a new mechanism where platelet-derived extracellular vesicles participate in increasing vascular permeability during dengue virus infection in mice.
Collapse
Affiliation(s)
- Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | | |
Collapse
|
39
|
Anghel L, Sascău R, Radu R, Stătescu C. From Classical Laboratory Parameters to Novel Biomarkers for the Diagnosis of Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21061920. [PMID: 32168924 PMCID: PMC7139541 DOI: 10.3390/ijms21061920] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Venous thrombosis is a common and potentially fatal disease, because of its high morbidity and mortality, especially in hospitalized patients. To establish the diagnosis of venous thrombosis, in the last years, a multi-modality approach that involves not only imaging modalities but also serology has been evolving. Multiple studies have demonstrated the use of some biomarkers, such as D-dimer, selectins, microparticles or inflammatory cytokines, for the diagnosis and treatment of venous thrombosis, but there is no single biomarker available to exclusively confirm the diagnosis of venous thrombosis. Considering the fact that there are some issues surrounding the management of patients with venous thrombosis and the duration of treatment, recent studies support the idea that these biomarkers may help guide the length of appropriate anticoagulation treatment, by identifying patients at high risk of recurrence. At the same time, biomarkers may help predict thrombus evolution, potentially identifying patients that would benefit from more aggressive therapies. This review focuses on classic and novel biomarkers currently under investigation, discussing their diagnostic performance and potential benefit in guiding the therapy for venous thrombosis.
Collapse
Affiliation(s)
- Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| | - Radu Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
- Correspondence: ; Tel.: +40-0232-211834
| | - Rodica Radu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| |
Collapse
|
40
|
Phosphatidylserine-exposing blood cells, microparticles and neutrophil extracellular traps increase procoagulant activity in patients with pancreatic cancer. Thromb Res 2020; 188:5-16. [PMID: 32032826 DOI: 10.1016/j.thromres.2020.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/05/2023]
Abstract
Patients with pancreatic cancer (PC) are at increased risk of venous thrombosis, but the precise mechanisms of hypercoagulable state in PC remain unclear. We aimed to identify how phosphatidylserine positive (PS+) blood cells (BCs), PS+ microparticles (MPs) and neutrophil extracellular traps (NETs) regulate procoagulant activity (PCA) in PC, and to assess the relationship between PCA and PC staging. A total of 83 PC patients with different stages of disease were compared to 30 healthy controls, with confocal microscopy and flow cytometry used to assess MP and cellular PS exposure. MP and cell PCA was determined using both fibrin production assays and procoagulant enzyme complex analyses, and coagulation time was further measured. Patients with stage I PC and healthy controls exhibited significantly lower frequencies of PS+ MPs and BCs relative to those with more advanced disease, which may partly due to the increased levels of inflammation cytokines in advanced disease. Functional coagulation assays indicated that PS+ MPs and BCs derived from patients with stage II/III/IV PC directly contribute to elevated FXa, thrombin, and fibrin formation, and to more rapid coagulation relative to healthy control samples. In inhibition assays, lactadherin, which antagonizes PS, led to a roughly 80% inhibition of PCA. We further used isolated NETs to stimulate endothelial cells, revealing that this led to morphological changes including retraction from cell-cell junctions and a more pro-coagulative phenotype, with DNase I and activated protein C treatment reversing these changes. In patients with stage III PC, curative resection surgery significantly reduced PCA, whereas non-curative surgery did not have a marked impact based on studies of pre- and post-operative samples. These results highlight the pathogenic activity of PS+ cells, MPs, and NETs in promoting a prothrombotic environment within individuals suffering from advanced PC. Targeting PS and NETs in these patients may thus be a viable means of preventing pathological thrombosis.
Collapse
|
41
|
Reshetnyak VI, Maev IV, Reshetnyak TM, Zhuravel SV, Pisarev VM. Liver Disease and Hemostasis (Review) Part 2. Cholestatic Liver Disease and Hemostasis. GENERAL REANIMATOLOGY 2019; 15:80-93. [DOI: 10.15360/1813-9779-2019-6-80-93] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence or development of liver disorders can significantly complicate the course of critical illness and terminal conditions. Systemic hemostatic disorders are common in Intensive Care Units patients with cholestatic liver diseases, so the study of the mechanisms of their development can contribute to the understanding of the development of multiorgan failure in critical illness.The review discusses current data on changes in hemostatic parameters in patients with cholestatic liver diseases, proposes a mechanism for the development of such disorders, which involve interactions of phospholipids with platelet and endotheliocyte membranes. It is suggested that a trend for thrombosis in patients with cholestatic liver disease is due to increased accumulation of bile acids in the systemic circulation. Available data demonstrate that the antiphospholipid syndrome may predispose to the formation of blood clots due to alterations of phospholipid composition of membranes of platelets and vascular endothelial cells by circulating antiphospholipid antibodies. Clarifying the mechanisms contributing to changes of the blood coagulation system parameters in liver disorders will aid to development of optimal correction of hemostatic disorders in patients with chronic liver diseases.
Collapse
Affiliation(s)
- Vasiliy I. Reshetnyak
- A. I. Evdokimov Moscow State University of medicine and dentistry, Ministry of Health of Russia
| | - Igor V. Maev
- A. I. Evdokimov Moscow State University of medicine and dentistry, Ministry of Health of Russia
| | | | - Sergei V. Zhuravel
- N. V. Sklifosovsky Research Institute of Emergency Care, Moscow Healthcare Department
| | - Vladimir M. Pisarev
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| |
Collapse
|
42
|
Kaphan E, Laurin D, Lafeuillade B, Drillat P, Park S. Impact of transfusion on survival in patients with myelodysplastic syndromes: Current knowledge, new insights and transfusion clinical practice. Blood Rev 2019; 41:100649. [PMID: 31918886 DOI: 10.1016/j.blre.2019.100649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 02/01/2023]
Abstract
Red Blood Cell (RBC) transfusion dependence is a prevalent consequence of anaemia in patients with lower risk Myelodysplastic Syndromes (MDS). These patients have shorter survival compared to patients responding to Erythropoiesis-stimulating agents (ESA), raising the question of potential negative effects of chronic RBC transfusions on MDS prognosis, independently of IPSS-R. Besides commonly identified complications of transfusions like iron toxicity or cardiac events, oxidative stress could be a risk factor for ineffective haematopoiesis. Recently, physicochemical changes of RBC during storage have been described. These changes called storage lesions could play a role in immunomodulation in vivo. We review the currently identified sources of potential impact on transfusion-associated effects in MDS patients and we discuss the unexplored potential role of erythrocyte-derived-extracellular vesicles. They could amplify impairment of haematopoiesis in addition to the negative intrinsic effects underlying the pathology in MDS. Thus, chronic RBC transfusions appear to potentially impact the outcome of MDS.
Collapse
Affiliation(s)
- Eléonore Kaphan
- Service d'Hématologie, CHU de Grenoble, CS 10 217, Grenoble Cedex 09 38043, France.
| | - David Laurin
- Département scientifique, Etablissement Français du Sang Auvergne Rhône-Alpes, La Tronche, France; Institute for Advanced Biosciences, Equipe Pathologie Moléculaire des Cancers et Biomarqueurs, Université Grenoble Alpes, INSERM U1209 & CNRS UMR 5309, France
| | - Bruno Lafeuillade
- Service d'Hématologie, CHU de Grenoble, CS 10 217, Grenoble Cedex 09 38043, France
| | - Philippe Drillat
- Service d'Hématologie, CHU de Grenoble, CS 10 217, Grenoble Cedex 09 38043, France; Département scientifique, Etablissement Français du Sang Auvergne Rhône-Alpes, La Tronche, France
| | - Sophie Park
- Service d'Hématologie, CHU de Grenoble, CS 10 217, Grenoble Cedex 09 38043, France; Institute for Advanced Biosciences, Equipe Pathologie Moléculaire des Cancers et Biomarqueurs, Université Grenoble Alpes, INSERM U1209 & CNRS UMR 5309, France.
| |
Collapse
|
43
|
Ability of Fibrin Monomers to Predict Progressive Hemorrhagic Injury in Patients with Severe Traumatic Brain Injury. Neurocrit Care 2019; 33:182-195. [PMID: 31797276 DOI: 10.1007/s12028-019-00882-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Progressive hemorrhagic injury (PHI) is common in patients with severe traumatic brain injury (TBI) and is associated with poor outcomes. TBI-associated coagulopathy is frequent and has been described as risk factor for PHI. This coagulopathy is a dynamic process involving hypercoagulable and hypocoagulable states either one after the other either concomitant. Fibrin monomers (FMs) are a direct marker of thrombin action and thus reflect coagulation activation. This study sought to determine the ability of FM to predict PHI after severe TBI. METHODS We conducted a prospective, observational study including all severe TBI patients admitted in the trauma center. Between September 2011 and September 2016, we enrolled patients with severe TBI into the derivation cohort. Between October 2016 and December 2018, we recruited the validation cohort on the same basis. Study protocol included FM measurements and standard coagulation test at admission and two computed tomography (CT) scans (upon arrival and at least 6 h thereafter). A PHI was defined by an increment in size of initial lesion (25% or more) or the development of a new hemorrhage in the follow-up CT scan. Multivariate logistic regression analysis was applied to identify predictors of PHI. RESULTS Overall, 106 patients were included in the derivation cohort. Fifty-four (50.9%) experienced PHI. FM values were higher in these patients (151 [136.8-151] vs. 120.5 [53.3-151], p < 0.0001). The ROC curve demonstrated that FM had a fair accuracy to predict the occurrence of PHI with an area under curve of 0.7 (95% CI [0.6-0.79]). The best threshold was determined at 131.7 μg/ml. In the validation cohort of 54 patients, this threshold had a negative predictive value of 94% (95% CI [71-100]) and a positive predictive value of 49% (95% CI [32-66]). The multivariate logistic regression analysis identified 2 parameters associated with PHI: FM ≥ 131.7 (OR 6.8; 95% CI [2.8-18.1]) and Marshall category (OR 1.7; 95% CI [1.3-2.2]). Coagulopathy was not associated with PHI (OR 1.3; 95% CI [0.5-3.0]). The proportion of patients with an unfavorable functional neurologic outcome at 6-months follow-up was higher in patients with positive FM: 59 (62.1%) versus 16 (29.1%), p < 0.0001. CONCLUSIONS FM levels at admission had a fair accuracy to predict PHI in patients with severe TBI. FM values ≥ 131.7 μg/ml are independently associated with the occurrence of PHI.
Collapse
|
44
|
Yu M, Xie R, Zhang Y, Liang H, Hou L, Yu C, Zhang J, Dong Z, Tian Y, Bi Y, Kou J, Novakovic VA, Shi J. Phosphatidylserine on microparticles and associated cells contributes to the hypercoagulable state in diabetic kidney disease. Nephrol Dial Transplant 2019. [PMID: 29529237 DOI: 10.1093/ndt/gfy027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Relatively little is known about the role of phosphatidylserine (PS) in procoagulant activity (PCA) in patients with diabetic kidney disease (DKD). This study was designed to evaluate whether exposed PS on microparticles (MPs) and MP-origin cells were involved in the hypercoagulability in DKD patients. Methods DKD patients (n = 90) were divided into three groups based on urinary albumin excretion rate, defined as normoalbuminuria (No-A) (<30 mg/24 h), microalbuminuria (Mi-A) (30-299 mg/24 h) or macroalbuminuria (Ma-A) (>300 mg/24 h), and compared with healthy controls (n = 30). Lactadherin was used to quantify PS exposure on MPs and their original cells. Healthy blood cells (BCs) and human umbilical vein endothelial cells (HUVECs) were treated with 25, 5 or 2.5 mmol/L glucose as well as 3-12 mg/dL uric acid and cells were evaluated by clotting time and purified coagulation complex assays. Fibrin production was determined by turbidity. PS exposure and fibrin strands were observed using confocal microscopy. Results Using flow cytometry, we found that PS+ MPs (derived from platelets, erythrocytes, HUVECs, neutrophils, monocytes and lymphocytes) and BCs were significantly higher in patients than in controls. Furthermore, the number of PS+ MPs and BCs in patients with Ma-A was significantly higher than in patients with No-A. Similarly, we observed markedly elevated PS exposure on HUVECs cultured with serum from patients with Ma-A versus serum from patients with Mi-A or normoalbuminuria. In addition, circulating PS+ MPs cooperated with PS+ cells, contributing to markedly shortened coagulation time and dramatically increased FXa/thrombin generation and fibrin formation in each DKD group. Confocal microscopy images demonstrated colocalization of fibrin with PS on HUVECs. Moreover, blockade of exposed PS on MPs and cells with lactadherin inhibited PCA by ∼80%. In vitro, BCs and endothelial cells exposed more PS in hypoglycemia or hyperglycemia. Interestingly, reconstitution experiments showed that hypoglycemia-treated cells could be further activated or injured when recovery is obtained reaching hyperglycemia. Moreover, uric acid induced PS exposure on cells (excluding platelets) at concentrations >6 mg/dL. Linear regression analysis showed that levels of PS+ BCs and microparticles were positively correlated with uric acid and proteinuria, but negatively correlated with glomerular filtration rate. Conclusions Our results suggest that PS+ MPs and MP-origin cells play procoagulant roles in patients with DKD. Blockade of PS could become a novel therapeutic modality for the prevention of thrombosis in these patients.
Collapse
Affiliation(s)
- Muxin Yu
- Department of Nephrology, the First Hospital, Harbin, China
| | - Rujuan Xie
- Department of Nephrology, the First Hospital, Harbin, China
| | - Yan Zhang
- Department of Hematology, the First Hospital, Harbin, China
| | - Hui Liang
- Department of Nephrology, the First Hospital, Harbin, China
| | - Li Hou
- Department of Nephrology, the First Hospital, Harbin, China
| | - Chengyuan Yu
- Department of Nephrology, the First Hospital, Harbin, China
| | - Jinming Zhang
- Department of Gastroenterology, the Fourth Hospital, Harbin, China
| | - Zengxiang Dong
- Department of Cardiology, the First Hospital, Harbin, China
| | - Ye Tian
- Department of Cardiology, the First Hospital, Harbin, China
| | - Yayan Bi
- Department of Cardiology, the First Hospital, Harbin, China
| | - Junjie Kou
- Department of Cardiology, the Second Hospital, Harbin Medical University, Harbin, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jialan Shi
- Department of Hematology, the First Hospital, Harbin, China.,Department of Research, VA Boston Healthcare System, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Surgery, VA Boston Healthcare System, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
46
|
Han C, Han L, Huang P, Chen Y, Wang Y, Xue F. Syncytiotrophoblast-Derived Extracellular Vesicles in Pathophysiology of Preeclampsia. Front Physiol 2019; 10:1236. [PMID: 31632289 PMCID: PMC6779799 DOI: 10.3389/fphys.2019.01236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a common obstetric complication associated with pregnancy and it endangers lives of the mother and the infant. The histopathological changes associated with preeclampsia include systemic endothelial dysfunction, persistent inflammatory state, and coagulation and fibrinolysis dysregulations. Preeclampsia is considered to be caused by the systemic vasoconstriction of small arteries and disruption of the endothelial integrity, resulting in hypertension, proteinuria, and multiple organ dysfunction. However, mediators that trigger or propagate the pathology of preeclampsia remain poorly defined. Syncytiotrophoblast-derived extracellular vesicles (SDEVs) are increasingly recognized as a key mediator for the development of preeclampsia, but the underlying mechanisms through which these SDEVs are released and induce systemic responses are not fully understood. This review focuses on multiple roles of SDEVs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Cha Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lulu Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Pengzhu Huang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Chen
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
47
|
Antonova OA, Yakushkin VV, Mazurov AV. Coagulation Activity of Membrane Microparticles. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Maličev E. The use of flow cytometry in the diagnosis of heparin-induced thrombocytopenia (HIT). Transfus Med Rev 2019; 34:34-41. [PMID: 31575433 DOI: 10.1016/j.tmrv.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/21/2019] [Accepted: 08/07/2019] [Indexed: 11/25/2022]
Abstract
Heparin-induced thrombocytopenia (HIT) affects some of the patients exposed to heparin. It is mediated by antibodies that recognize neoepitopes on platelet factor 4 (PF4)/heparin complexes. A HIT diagnosis requires both clinical and laboratory evaluation and remains a challenge. Since many patients develop antibodies in response to heparin, but only a few of them generate anti-PF4/heparin antibodies capable of activating platelets which consequently cause clinical complications, the performance of serologic assays is not enough to diagnose HIT. Functional assays can identify pathogenic antibodies capable of platelet activation, but they are more demanding and their limited availability contributes to the problem of diagnosing HIT. Restricted laboratories usually collect sera of multiple patients to perform functional assays only once or twice a week; hence, a HIT diagnosis can take several days. The use of flow cytometry appears to be a promising alternative in the confirmation of pathogenic anti-PF4/heparin antibodies. Flow cytometric assays detect either activation markers on a healthy donor's platelet surfaces or platelet derived microparticles formed after platelet incubation with a patient's serum. Flow cytometers are readily available in many clinical laboratories, so this technology introduces the possibility of an earlier HIT diagnosis. The objective of this review was to collect findings on flow cytometric HIT confirmations to the present date, and to review the currently available flow cytometric assays used in the diagnosis of HIT.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia.
| |
Collapse
|
49
|
Guo J, Feng C, Zhang B, Zhang S, Shen X, Zhu J, Zhao XX. Extraction and identification of platelet‑derived microparticles. Mol Med Rep 2019; 20:2916-2921. [PMID: 31322221 DOI: 10.3892/mmr.2019.10484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/07/2019] [Indexed: 11/06/2022] Open
Abstract
Microparticles are carriers of signals for intracellular signal transduction. These carriers include proteins, mRNAs, microRNAs and other bioactive substances. Platelets are a major source of circulating microparticles, and microparticles are closely associated with the development of certain cardiovascular diseases. In the present study, a method for separating, extracting and identifying platelet‑derived microparticles was developed and differences in the expression of surface proteins on microparticles harvested from platelets stimulated by vortexing or treatment with thrombin was investigated. The counts, composition, sizes and inner structures of microparticles were determined using flow cytometry and transmission electron microscopy. Additionally, it was demonstrated that platelets could be readily activated, and a large quantity of microparticles with varying complex compositions, structures and sizes were derived from activated platelets. High purity platelet‑derived microparticles were obtained by gradient centrifugation. However, the microparticles derived from platelets stimulated by thrombin treatment or vortexing differed significantly in the levels of CD63. The present study aimed to provide improved options for the extraction and identification of microparticles.
Collapse
Affiliation(s)
- Jun Guo
- Department of Geriatrics, Anhui Provincial Hospital, Hefei, Anhui 230000, P.R. China
| | - Can Feng
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200433, P.R. China
| | - Bili Zhang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Shiyang Zhang
- Department of Geriatrics, Anhui Provincial Hospital, Hefei, Anhui 230000, P.R. China
| | - Xiaxian Shen
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jiaqi Zhu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
50
|
Antonova OA, Shustova ON, Golubeva NV, Yakushkin VV, Alchinova IB, Karganov MY, Mazurov AV. [Coagulation properties of erythrocyte derived membrane microparticles]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:214-221. [PMID: 31258144 DOI: 10.18097/pbmc20196503214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Membrane microparticles (MP) produced upon cell activation and/or damage possess coagulation activity, i.e. ability to accelerate blood clotting. They contain on their surface phosphatidylserine (PS), a substrate for assembling coagulation enzymatic complexes, and some of them tissue factor (TF), the initiator of clotting cascade reactions. In this study coagulation properties of MP derived from erythrocytes have been investigated. These MP were obtained from donor's erythrocytes activated with ionophore A23187 as well as from outdated erythrocyte concentrates for transfusion. MP were counted by flow cytometry. Coagulation activity of MP was examined by modified plasma recalcification assay. Involvement of PS and TF in this reaction was assessed using PS blocker lactadherin and anti-TF antibodies. TF activity in MP was measured by its ability to activate factor X in a chromogenic assay. Size of MP was evaluated by dynamic light scattering. Properties of erythrocyte MP were compared with previously characterized (using the same methodological approaches) MP derived from platelets and monocytic THP-1 cells, lacking and containing TF, respectively. Erythrocyte MP accelerated plasma clotting, but less actively than MP from platelets and MP from THP-1 cells, which demonstrated maximal activity. Lactadherin completely inhibited coagulation activity of all MP. Anti-TF antibodies did not affect clotting parameters in the presence of platelet and erythrocyte MP, but slowed clotting in the presence of MP from THP-1 cells. TF activity was not detected in erythrocyte and platelet MP, unlike MP from THP-1 cells expressing active TF. MP derived from erythrocytes were smaller than MP from platelets and THP-1 cells, with average diameter about 200 nm and 400 nm respectively. Thus, MP from erythrocyte possess less ability to accelerate plasma clotting in comparison with MP from platelet and THP-1 cells. The data obtained suggest that lesser coagulation activity of erythrocyte MP in comparison with MP from THP-1 cells is due to the absence of TF in erythrocyte MP (in contrast to MP from THP-1 cells) and to their smaller size, and in comparison with MP from platelets (which as erythrocyte MP do not express TF) is due to their smaller size only.
Collapse
Affiliation(s)
- O A Antonova
- National Medical Research Center for Cardiology, Moscow, Russia
| | - O N Shustova
- National Medical Research Center for Cardiology, Moscow, Russia
| | - N V Golubeva
- National Medical Research Center for Cardiology, Moscow, Russia
| | - V V Yakushkin
- National Medical Research Center for Cardiology, Moscow, Russia
| | - I B Alchinova
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M Y Karganov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - A V Mazurov
- National Medical Research Center for Cardiology, Moscow, Russia
| |
Collapse
|