1
|
Li Z, Zhang M, Qiao L, Du Z, Gbeinbo FL, Yao Z, Zhu G, He Y. Knockdown of Oatp and Mdr Transporter Genes Enhances Cardenolide Toxicity to the Noncardenolide Feeder, Nilaparvata lugens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8833-8841. [PMID: 40181752 DOI: 10.1021/acs.jafc.4c13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Insect adaptation to toxic cardenolides has been a model system to study convergent evolution between plants and herbivores. It was hypothesized that Organic anion-transporting polypeptides (Oatps) and multidrug transporters (Mdrs) provide basal resistance against cardenolides in a nonadapted insect. However, there is still little evidence to support this hypothesis. A noncardenolide feeder and an important rice pest, Nilaparvata lugens, were used to test this hypothesis. Bioassays revealed that two representative cardenolides, ouabain, and digoxin, demonstrated significant toxicity against N. lugens. The suppression of the expression levels of six Oatp genes and three Mdr genes by the RNAi did not result in any significant lethal phenotype in N. lugens. However, the knockdown of certain Oatp and Mdr genes significantly enhances the oral toxicity of ouabain and digoxin to N. lugens. The findings of our study support that Oatps and Mdrs are key transporters in N. lugens protection against dietary cardenolides.
Collapse
Affiliation(s)
- Zengxin Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Zhejiang Key Enterprise Research Institute of Nanotechnology and Biopesticides, Hangzhou 310021, China
| | - Liya Qiao
- Zhejiang Key Enterprise Research Institute of Nanotechnology and Biopesticides, Hangzhou 310021, China
| | - Zhao Du
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fiderikumo Livingstone Gbeinbo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangyi Yao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
3
|
Selective Fluorescent Probes for High-Throughput Functional Diagnostics of the Human Multidrug Transporter P-Glycoprotein (ABCB1). Int J Mol Sci 2022; 23:ijms231810599. [PMID: 36142507 PMCID: PMC9503576 DOI: 10.3390/ijms231810599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The multidrug transporter ABCB1 (MDR1, Pgp) plays an important role in the absorption, distribution, metabolism, and elimination of a wide range of pharmaceutical compounds. Functional investigation of the ABCB1 expression is also essential in many diseases, including drug-resistant cancer, inflammatory conditions, or Alzheimer disease. In this study, we examined the potential interaction of the ABCB1 multidrug transporter with a group of commercially available viability dyes that are generally considered not to penetrate into intact cells. Here, we demonstrate that the slow cellular accumulation of TO-PRO™-1 (TP1) or TO-PRO™-3 (TP3) was strongly inhibited by ABCB1-dependent dye extrusion. TP1/3 dye accumulation was not affected by the presence of ABCC1 or ABCG2, while this uptake was increased to the level in the ABCB1-negative cells by a specific P-glycoprotein inhibitor, Tariquidar. We suggest that TP compounds can be used as highly sensitive, selective, non-toxic, and stable dyes to examine the functional expression and properties of the ABCB1 multidrug transporter, especially in microplate-based high-throughput flow cytometry assays. In addition, we demonstrate the applicability of the TP dyes to efficiently select and separate even a very low number of Pgp-expressing intact cells.
Collapse
|
4
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
5
|
Salcedo-Sora JE, Jindal S, O'Hagan S, Kell DB. A palette of fluorophores that are differentially accumulated by wild-type and mutant strains of Escherichia coli: surrogate ligands for profiling bacterial membrane transporters. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001016. [PMID: 33406033 PMCID: PMC8131027 DOI: 10.1099/mic.0.001016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the 'Keio' strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the 'wild-type' MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Srijan Jindal
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Steve O'Hagan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
6
|
Telbisz Á, Ambrus C, Mózner O, Szabó E, Várady G, Bakos É, Sarkadi B, Özvegy-Laczka C. Interactions of Potential Anti-COVID-19 Compounds with Multispecific ABC and OATP Drug Transporters. Pharmaceutics 2021; 13:pharmaceutics13010081. [PMID: 33435273 PMCID: PMC7827085 DOI: 10.3390/pharmaceutics13010081] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
During the COVID-19 pandemic, several repurposed drugs have been proposed to alleviate the major health effects of the disease. These drugs are often applied with analgesics or non-steroid anti-inflammatory compounds, and co-morbid patients may also be treated with anticancer, cholesterol-lowering, or antidiabetic agents. Since drug ADME-tox properties may be significantly affected by multispecific transporters, in this study, we examined the interactions of the repurposed drugs with the key human multidrug transporters present in the major tissue barriers and strongly affecting the pharmacokinetics. Our in vitro studies, using a variety of model systems, explored the interactions of the antimalarial agents chloroquine and hydroxychloroquine; the antihelmintic ivermectin; and the proposed antiviral compounds ritonavir, lopinavir, favipiravir, and remdesivir with the ABCB1/Pgp, ABCG2/BCRP, and ABCC1/MRP1 exporters, as well as the organic anion-transporting polypeptide (OATP)2B1 and OATP1A2 uptake transporters. The results presented here show numerous pharmacologically relevant transporter interactions and may provide a warning on the potential toxicities of these repurposed drugs, especially in drug combinations at the clinic.
Collapse
Affiliation(s)
- Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Csilla Ambrus
- SOLVO Biotechnology, Irinyi József Street 4-20, 1117 Budapest, Hungary;
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Orsolya Mózner
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Edit Szabó
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - György Várady
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
- Correspondence: (B.S.); (C.Ö.-L.)
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Correspondence: (B.S.); (C.Ö.-L.)
| |
Collapse
|
7
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
8
|
Kontar S, Imrichova D, Bertova A, Mackova K, Poturnayova A, Sulova Z, Breier A. Cell Death Effects Induced by Sulforaphane and Allyl Isothiocyanate on P-Glycoprotein Positive and Negative Variants in L1210 Cells. Molecules 2020; 25:molecules25092093. [PMID: 32365761 PMCID: PMC7249010 DOI: 10.3390/molecules25092093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Variants of L1210 leukemia cells-namely, parental P-glycoprotein-negative S cells and R and T cells expressing P-glycoprotein, due to selection with vincristine and transfection with the human p-glycoprotein gene, respectively-were used. The responses of these cell variants to two naturally occurring isothiocyanates-sulforaphane (SFN, from cruciferous vegetables) and allyl isothiocyanate (AITC, from mustard, radish, horseradish and wasabi)-were studied. We obtained conflicting results for the cell death effects induced by isothiocyanates, as measured by i. cell counting, which showed inhibited proliferation, and ii. cell metabolic activity via an MTS assay, which showed an increased MTS signal. These results indicated the hyperactivation of cell metabolism induced by treatment with isothiocyanates. In more detailed study, we found that, depending on the cell variants and the isothiocyanate used in treatment, apoptosis and necrosis (detected by annexin-V cells and propidium iodide staining), as well as autophagy (detected with monodansylcadaverine), were involved in cell death. We also determined the cell levels/expression of Bcl-2 and Bax as representative anti- and pro-apoptotic proteins of the Bcl-2 family, the cell levels/expression of members of the canonical and noncanonical NF-κB pathways, and the cell levels of 16 and 18 kDa fragments of LC3B protein as markers of autophagy.
Collapse
Affiliation(s)
- Szilvia Kontar
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Denisa Imrichova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| | - Anna Bertova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Katarina Mackova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Alexandra Poturnayova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia; (S.K.); (A.B.); (K.M.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (D.I.); (Z.S.); (A.B.); Tel.: +421-2-322-95-510 (Z.S.); +421-2-593-25-514 (A.B.)
| |
Collapse
|
9
|
Akbarzadeh M, Maroufi NF, Tazehkand AP, Akbarzadeh M, Bastani S, Safdari R, Farzane A, Fattahi A, Nejabati HR, Nouri M, Samadi N. Current approaches in identification and isolation of cancer stem cells. J Cell Physiol 2019; 234:14759-14772. [PMID: 30741412 DOI: 10.1002/jcp.28271] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Cancer stem cells (CSCs) are tumor cells with initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics. Efficient isolation and characterization of CSCs pave the way for more comprehensive knowledge about tumorigenesis, heterogeneity, and chemoresistance. Also a better understanding of CSCs will lead to novel era of both basic and clinical cancer research, reclassification of human tumors, and development of innovative therapeutic strategies. Finding novel diagnostic and effective therapeutic strategies also enhance the success of treatment in cancer patients. There are various methods based on the characteristics of the CSCs to detect and isolate these cells, some of which have recently developed. This review summarized current techniques for effective isolation and characterization of CSCs with a focus on advantages and limitations of each method with clinical applications.
Collapse
Affiliation(s)
- Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moloud Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cellular and Molecular Biology, Faculty of Biological Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safdari
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farzane
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Fattahi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Jindal S, Yang L, Day PJ, Kell DB. Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli. BMC Microbiol 2019; 19:195. [PMID: 31438868 PMCID: PMC6704527 DOI: 10.1186/s12866-019-1561-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background It is widely believed that most xenobiotics cross biomembranes by diffusing through the phospholipid bilayer, and that the use of protein transporters is an occasional adjunct. According to an alternative view, phospholipid bilayer transport is negligible, and several different transporters may be involved in the uptake of an individual molecular type. We recognise here that the availability of gene knockout collections allows one to assess the contributions of all potential transporters, and flow cytometry based on fluorescence provides a convenient high-throughput assay for xenobiotic uptake in individual cells. Results We used high-throughput flow cytometry to assess the ability of individual gene knockout strains of E coli to take up two membrane-permeable, cationic fluorescent dyes, namely the carbocyanine diS-C3(5) and the DNA dye SYBR Green. Individual strains showed a large range of distributions of uptake. The range of modal steady-state uptakes for the carbocyanine between the different strains was 36-fold. Knockouts of the ATP synthase α- and β-subunits greatly inhibited uptake, implying that most uptake was ATP-driven rather than being driven by a membrane potential. Dozens of transporters changed the steady-state uptake of the dye by more than 50% with respect to that of the wild type, in either direction (increased or decreased); knockouts of known influx and efflux transporters behaved as expected, giving credence to the general strategy. Many of the knockouts with the most reduced uptake were transporter genes of unknown function (‘y-genes’). Similarly, several overexpression variants in the ‘ASKA’ collection had the anticipated, opposite effects. Similar results were obtained with SYBR Green (the range being approximately 69-fold). Although it too contains a benzothiazole motif there was negligible correlation between its uptake and that of the carbocyanine when compared across the various strains (although the membrane potential is presumably the same in each case). Conclusions Overall, we conclude that the uptake of these dyes may be catalysed by a great many transporters of putatively broad and presently unknown specificity, and that the very large range between the ‘lowest’ and the ‘highest’ levels of uptake, even in knockouts of just single genes, implies strongly that phospholipid bilayer transport is indeed negligible. This work also casts serious doubt upon the use of such dyes as quantitative stains for representing either bioenergetic parameters or the amount of cellular DNA in unfixed cells (in vivo). By contrast, it opens up their potential use as transporter assay substrates in high-throughput screening. Electronic supplementary material The online version of this article (10.1186/s12866-019-1561-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srijan Jindal
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Lei Yang
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Philip J Day
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Douglas B Kell
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark. .,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
11
|
Windt T, Tóth S, Patik I, Sessler J, Kucsma N, Szepesi Á, Zdrazil B, Özvegy-Laczka C, Szakács G. Identification of anticancer OATP2B1 substrates by an in vitro triple-fluorescence-based cytotoxicity screen. Arch Toxicol 2019; 93:953-964. [PMID: 30863990 PMCID: PMC6510822 DOI: 10.1007/s00204-019-02417-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism and excretion of drugs. The cellular accumulation of many drugs is the result of the net function of efflux and influx transporters. Efflux transporters such as P-glycoprotein/ABCB1 have been shown to confer multidrug resistance in cancer. Although expression of uptake transporters has been confirmed in cancer cells, their role in chemotherapy response has not been systematically investigated. In the present study we have adapted a fluorescence-based cytotoxic assay to characterize the influence of key drug-transporters on the toxicity of approved anticancer drugs. Co-cultures of fluorescently labeled parental and transporter-expressing cells (expressing ABCB1, ABCG2 or OATP2B1) were screened against 101 FDA-approved anticancer drugs, using a novel, automated, triple fluorescence-based cytotoxicity assay. By measuring the survival of parental and transporter-expressing cells in co-cultures, we identify those FDA-approved anticancer drugs, whose toxicity is influenced by ABCB1, ABCG2 or OATP2B1. In addition to confirming known substrates of ABCB1 and ABCG2, the fluorescence-based cytotoxicity assays identified anticancer agents whose toxicity was increased in OATP2B1 expressing cells. Interaction of these compounds with OATP2B1 was verified in dedicated transport assays using cell-impermeant fluorescent substrates. Understanding drug-transporter interactions is needed to increase the efficacy of chemotherapeutic agents. Our results highlight the potential of the fluorescence-based HT screening system for identifying transporter substrates, opening the way for the design of therapeutic approaches based on the inhibition or even the exploitation of transporters in cancer cells.
Collapse
Affiliation(s)
- Tímea Windt
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
| | - Izabel Patik
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Judit Sessler
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Áron Szepesi
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
- Institute of Cancer Research, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Apáti Á, Varga N, Berecz T, Erdei Z, Homolya L, Sarkadi B. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:61-75. [PMID: 30526128 DOI: 10.1080/17425255.2019.1558207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications. Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a 'body-on-a-chip' model system. Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.
Collapse
Affiliation(s)
- Ágota Apáti
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nóra Varga
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Tünde Berecz
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Zsuzsa Erdei
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - László Homolya
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Balázs Sarkadi
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| |
Collapse
|
13
|
Characterization of new, efficient Mycobacterium tuberculosis topoisomerase-I inhibitors and their interaction with human ABC multidrug transporters. PLoS One 2018; 13:e0202749. [PMID: 30183750 PMCID: PMC6124754 DOI: 10.1371/journal.pone.0202749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022] Open
Abstract
Drug resistant tuberculosis (TB) is a major worldwide health problem. In addition to the bacterial mechanisms, human drug transporters limiting the cellular accumulation and the pharmacological disposition of drugs also influence the efficacy of treatment. Mycobacterium tuberculosis topoisomerase-I (MtTopo-I) is a promising target for antimicrobial treatment. In our previous work we have identified several hit compounds targeting the MtTopo-I by in silico docking. Here we expand the scope of the compounds around three scaffolds associated with potent MtTopo-I inhibition. In addition to measuring the effect of newly generated compounds on MtTopo-I activity, we characterized the compounds’ antimicrobial activity, toxicity in human cells, and interactions with human multidrug transporters. Some of the newly developed MtTopo-I inhibitors have strong antimicrobial activity and do not harm mammalian cells. Moreover, our studies revealed significant human ABC drug transporter interactions for several MtTopo-I compounds that may modify their ADME-Tox parameters and cellular effects. Promising new drug candidates may be selected based on these studies for further anti-TB drug development.
Collapse
|
14
|
Elefantova K, Lakatos B, Kubickova J, Sulova Z, Breier A. Detection of the Mitochondrial Membrane Potential by the Cationic Dye JC-1 in L1210 Cells with Massive Overexpression of the Plasma Membrane ABCB1 Drug Transporter. Int J Mol Sci 2018; 19:ijms19071985. [PMID: 29986516 PMCID: PMC6073605 DOI: 10.3390/ijms19071985] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 01/13/2023] Open
Abstract
JC-1, a cationic fluorescent dye when added to living cells, is known to be localized exclusively in mitochondria, particularly in good physiological conditions characterized by sufficient mitochondrial membrane potential (ΔΨ). The accumulation of JC-1 in these organelles leads to the formation J-aggregates (with a specific red fluorescence emission maximum at 590 nm), which is in addition to the typical green fluorescence of J-monomers (emission maximum of ∼529 nm). The lack of mitochondrial ΔΨ leads to the depression of JC-1 mitochondrial accumulation and a decrease in J-aggregate formation. Therefore, the ratio between the red and green fluorescence of cells loaded with JC-1 is often used for the detection of the mitochondrial membrane potential. However, JC-1 represents a suitable substrate of the multidrug transporter P-glycoprotein (P-gp). Therefore, the depression of the JC-1 content in intracellular space and particularly in the mitochondria to a level that is inefficient for J-aggregate formation could be expected in P-gp-positive cells. In the current paper, we proved this behavior on parental P-gp-negative L1210 (S) cells and their P-gp-positive variants obtained by either selection with vincristine (R) or transfection with the human gene encoding P-gp (T). P-glycoprotein inhibitors cyclosporine A and verapamil fail to restore JC-1 loading of the R and T cells to an extent similar to that observed in S cells. In contrast, the noncompetitive high affinity P-gp inhibitor tariquidar fully restored JC-1 accumulation and the presence of the typical red fluorescence of J-aggregates. In the presence of tariquidar, measurement of the JC-1 fluorescence revealed similar levels of mitochondrial membrane potential in P-gp-negative (S) and P-gp-positive cells (R and T).
Collapse
Affiliation(s)
- Katarina Elefantova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava 1, Slovakia.
| | - Boris Lakatos
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava 1, Slovakia.
| | - Jana Kubickova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava 1, Slovakia.
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava 4, Slovakia.
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava 1, Slovakia.
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava 4, Slovakia.
| |
Collapse
|
15
|
Erdei Z, Schamberger A, Török G, Szebényi K, Várady G, Orbán TI, Homolya L, Sarkadi B, Apáti Á. Generation of multidrug resistant human tissues by overexpression of the ABCG2 multidrug transporter in embryonic stem cells. PLoS One 2018; 13:e0194925. [PMID: 29649238 PMCID: PMC5896897 DOI: 10.1371/journal.pone.0194925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
The ABCG2 multidrug transporter provides resistance against various endo- and xenobiotics, and protects the stem cells against toxins and stress conditions. We have shown earlier that a GFP-tagged version of ABCG2 is fully functional and may be used to follow the expression, localization and function of this transporter in living cells. In the present work we have overexpressed GFP-ABCG2, driven by a constitutive (CAG) promoter, in HUES9 human embryonic stem cells. Stem cell clones were generated to express the wild-type and a substrate-mutant (R482G) GFP-ABCG2 variant, by using the Sleeping Beauty transposon system. We found that the stable overexpression of these transgenes did not change the pluripotency and growth properties of the stem cells, nor their differentiation capacity to hepatocytes or cardiomyocytes. ABCG2 overexpression provided increased toxin resistance in the stem cells, and protected the derived cardiomyocytes against doxorubicin toxicity. These studies document the potential of a stable ABCG2 expression for engineering toxin-resistant human pluripotent stem cells and selected stem cell derived tissues.
Collapse
Affiliation(s)
- Zsuzsa Erdei
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anita Schamberger
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Török
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornélia Szebényi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás I. Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
16
|
Identification of novel cell-impermeant fluorescent substrates for testing the function and drug interaction of Organic Anion-Transporting Polypeptides, OATP1B1/1B3 and 2B1. Sci Rep 2018; 8:2630. [PMID: 29422623 PMCID: PMC5805760 DOI: 10.1038/s41598-018-20815-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
Organic Anion-Transporting Polypeptides are multispecific membrane proteins that regulate the passage of crucial endobiotics and drugs across pharmacological barriers. OATP1B1 and OATP1B3 have been described to play a major role in the hepatic uptake of statins, antivirals and various chemotherapeutics; whereas the pharmacological role of the ubiquitously expressed OATP2B1 is less well characterized. According to current industry standards, in vitro testing for susceptibility to OATP1B1 and 1B3 mediated transport is recommended for drug candidates that are eliminated in part via the liver. Here we show that human OATP1B1, 1B3 and 2B1 transport a series of commercially available viability dyes that are generally believed to be impermeable to intact cells. We demonstrate that the intracellular accumulation of Zombie Violet, Live/Dead Green, Cascade Blue and Alexa Fluor 405 is specifically increased by OATPs. Inhibition of Cascade Blue or Alexa Fluor 405 uptake by known OATP substrates/inhibitors yielded IC50 values in agreement with gold-standard radioligand assays. The fluorescence-based assays described in this study provide a new tool for testing OATP1B/2B1 drug interactions.
Collapse
|
17
|
A new fluorescent dye accumulation assay for parallel measurements of the ABCG2, ABCB1 and ABCC1 multidrug transporter functions. PLoS One 2018; 13:e0190629. [PMID: 29342177 PMCID: PMC5771559 DOI: 10.1371/journal.pone.0190629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.
Collapse
|
18
|
Liu S, Chen D, Yuan Y, Zhang X, Li Y, Yan S, Zhang J. Efficient intracellular delivery makes cancer cells sensitive to nanoemulsive chemodrugs. Oncotarget 2017; 8:65042-65055. [PMID: 29029410 PMCID: PMC5630310 DOI: 10.18632/oncotarget.17536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/15/2017] [Indexed: 11/25/2022] Open
Abstract
Evodiamine has been documented to possess activities in numerous cancer cells. Our preliminary study showed that A549 cells were insensitive to evodiamine. In this paper, A549 cells are sensitive to nanoemulsive evodiamine (EVONE) through an efficient intracellular and systematic delivery. EVONE entered tumor cells by energy-dependent and mainly through clathrin-mediated endocytosis. EVONE exerted a higher cytotoxicity in a dose- and time-dependent manner. The enhanced induction of cell cycle arrest was ascribed to the down-regulation of cyclin B and cyclin dependent kinase 1, while the enhanced induction of apoptosis was due to the activation of caspase −3, −8 and −9 and the decreased B-cell lymphoma 2/ assaciated X protein ratio. Furthermore, the in vivo kinetic, bioavailability and in situ absorption characteristics of EVONE were much better than those of free evodiamine. The cancer cells insensitive to free chemodrugs became sensitive to nanoemulsive chemodrugs.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dilong Chen
- Tumor Drug Engineering Research Center, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Yuming Yuan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xue Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yao Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Shenglei Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|