1
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
3
|
Dubois C, Houel-Renault L, Erard M, Boustany NN, Westbrook N. Förster resonance energy transfer efficiency measurements on vinculin tension sensors at focal adhesions using a simple and cost-effective setup. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082808. [PMID: 37441563 PMCID: PMC10335361 DOI: 10.1117/1.jbo.28.8.082808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Significance Forces inside cells play a fundamental role in tissue growth, affecting important processes such as cancer cell migration or tissue repair after injury. Förster resonance energy transfer (FRET)-based tension sensors are a remarkable tool for studying these forces and should be made easier to use. Aim We prove that absolute FRET efficiency can be measured on a simple setup, an order of magnitude more cost-effective than a standard FRET microscopy setup, by applying it to vinculin tension sensors (VinTS) at the focal adhesions of live CHO-K1 cells. Approach Our setup located at Université Paris-Saclay acquires donor and acceptor fluorescence in parallel on two low-cost CMOS cameras and uses two LEDs for rapid switching of the excitation wavelength at a reduced cost. The calibration required to extract FRET efficiency was achieved using a single construct (TSMod). FRET efficiencies were measured for VinTS and the tail-less control VinTL, lacking the actin-binding domain of vinculin. Measurements were confirmed on the same cell type using a more standard intensity-based setup located at Rutgers University. Results The average FRET efficiency of VinTS (22.0 % ± 4 % ) over more than 10,000 focal adhesions is significantly lower (p < 10 - 6 ) than that of VinTL (30.4 % ± 5 % ), our control that is insensitive to force, in agreement with the force exerted on vinculin at focal adhesions. Attachment of the CHO-K1 cells on fibronectin decreases FRET efficiency, thus increasing the force, compared with poly-lysine. FRET efficiency for the VinTL control is consistent with all measurements currently available in the literature, confirming the validity of our measurements and hence of our simpler setup. Conclusions Force measurements, resolved spatially inside a cell, can be achieved using FRET-based tension sensors with a cost effective intensity-based setup. This will facilitate combining FRET with techniques for applying controlled forces such as optical tweezers.
Collapse
Affiliation(s)
- Camille Dubois
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Ludivine Houel-Renault
- Université Paris-Saclay, Institut des Sciences Moléculaires d’Orsay, CNRS, Centre de Photonique pour la Biologie et les Matériaux, Orsay, France
| | - Marie Erard
- Université Paris-Saclay, Institut de Chimie Physique, CNRS, Orsay, France
| | - Nada N. Boustany
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Nathalie Westbrook
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| |
Collapse
|
4
|
Batta Á, Hajdu T, Nagy P. Improved estimation of the ratio of detection efficiencies of excited acceptors and donors for FRET measurements. Cytometry A 2023. [PMID: 36866503 DOI: 10.1002/cyto.a.24728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Förster resonance energy transfer (FRET) is a radiationless interaction between a donor and an acceptor whose distance dependence makes it a sensitive tool for studying the oligomerization and the structure of proteins. When FRET is determined by measuring the sensitized emission of the acceptor, a parameter characterizing the ratio of detection efficiencies of an excited acceptor versus an excited donor is invariably involved in the formalism. For FRET measurements involving fluorescent antibodies or other external labels, this parameter, designated by α, is usually determined by comparing the intensity of a known number of donors and acceptors in two independent samples leading to a large statistical variability if the sample size is small. Here, we present a method that improves precision by applying microbeads with a calibrated number of antibody binding sites and a donor-acceptor mixture in which donors and acceptors are present in a certain, experimentally determined ratio. A formalism is developed for determining α and the superior reproducibility of the proposed method compared to the conventional approach is demonstrated. Since the novel methodology does not require sophisticated calibration samples or special instrumentation, it can be widely applied for the quantification of FRET experiments in biological research.
Collapse
Affiliation(s)
- Ágnes Batta
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary.,Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Tímea Hajdu
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Rebenku I, Lloyd CB, Szöllősi J, Vereb G. Pixel-by-pixel autofluorescence corrected FRET in fluorescence microscopy improves accuracy for samples with spatially varied autofluorescence to signal ratio. Sci Rep 2023; 13:2934. [PMID: 36804608 PMCID: PMC9941493 DOI: 10.1038/s41598-023-30098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The actual interaction between signaling species in cellular processes is often more important than their expression levels. Förster resonance energy transfer (FRET) is a popular tool for studying molecular interactions, since it is highly sensitive to proximity in the range of 2-10 nm. Spectral spillover-corrected quantitative (3-cube) FRET is a cost effective and versatile approach, which can be applied in flow cytometry and various modalities of fluorescence microscopy, but may be hampered by varying levels of autofluorescence. Here, we have implemented pixel-by-pixel autofluorescence correction in microscopy FRET measurements, exploiting cell-free calibration standards void of autofluorescence that allow the correct determination of all spectral spillover factors. We also present an ImageJ/Fiji plugin for interactive analysis of single images as well as automatic creation of quantitative FRET efficiency maps from large image sets. For validation, we used bead and cell based FRET models covering a range of signal to autofluorescence ratios and FRET efficiencies and compared the approach with conventional average autofluorescence/background correction. Pixel-by-pixel autofluorescence correction proved to be superior in the accuracy of results, particularly for samples with spatially varying autofluorescence and low fluorescence to autofluorescence ratios, the latter often being the case for physiological expression levels.
Collapse
Affiliation(s)
- István Rebenku
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary ,grid.7122.60000 0001 1088 8582ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - Cameron B. Lloyd
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - János Szöllősi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary ,grid.7122.60000 0001 1088 8582ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary. .,ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary. .,Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
Ayad MA, Mahon T, Patel M, Cararo-Lopes MM, Hacihaliloglu I, Firestein BL, Boustany NN. Förster resonance energy transfer efficiency of the vinculin tension sensor in cultured primary cortical neuronal growth cones. NEUROPHOTONICS 2022; 9:025002. [PMID: 35651869 PMCID: PMC9150715 DOI: 10.1117/1.nph.9.2.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Significance: Interaction of neurons with their extracellular environment and the mechanical forces at focal adhesions and synaptic junctions play important roles in neuronal development. Aim: To advance studies of mechanotransduction, we demonstrate the use of the vinculin tension sensor (VinTS) in primary cultures of cortical neurons. VinTS consists of TS module (TSMod), a Förster resonance energy transfer (FRET)-based tension sensor, inserted between vinculin's head and tail. FRET efficiency decreases with increased tension across vinculin. Approach: Primary cortical neurons cultured on glass coverslips coated with poly-d-lysine and laminin were transfected with plasmids encoding untargeted TSMod, VinTS, or tail-less vinculinTS (VinTL) lacking the actin-binding domain. The neurons were imaged between day in vitro (DIV) 5 to 8. We detail the image processing steps for calculation of FRET efficiency and use this system to investigate the expression and FRET efficiency of VinTS in growth cones. Results: The distribution of fluorescent constructs was similar within growth cones at DIV 5 to 8. The mean FRET efficiency of TSMod ( 28.5 ± 3.6 % ) in growth cones was higher than the mean FRET efficiency of VinTS ( 24.6 ± 2 % ) and VinTL ( 25.8 ± 1.8 % ) ( p < 10 - 6 ). While small, the difference between the FRET efficiency of VinTS and VinTL was statistically significant ( p < 10 - 3 ), suggesting that vinculin is under low tension in growth cones. Two-hour treatment with the Rho-associated kinase inhibitor Y-27632 did not affect the mean FRET efficiency. Growth cones exhibited dynamic changes in morphology as observed by time-lapse imaging. VinTS FRET efficiency showed greater variance than TSMod FRET efficiency as a function of time, suggesting a greater dependence of VinTS FRET efficiency on growth cone dynamics compared with TSMod. Conclusions: The results demonstrate the feasibility of using VinTS to probe the function of vinculin in neuronal growth cones and provide a foundation for studies of mechanotransduction in neurons using this tension probe.
Collapse
Affiliation(s)
- Marina A. Ayad
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Timothy Mahon
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Mihir Patel
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Marina M. Cararo-Lopes
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Ilker Hacihaliloglu
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Bonnie L. Firestein
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Nada N. Boustany
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| |
Collapse
|
7
|
Liu Z, Luo Z, Chen H, Yin A, Sun H, Zhuang Z, Chen T. Optical section structured illumination-based Förster resonance energy transfer imaging. Cytometry A 2021; 101:264-272. [PMID: 34490985 DOI: 10.1002/cyto.a.24500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is an important tool suitable for studying molecular interactions in living cells. Optical section structured illumination microscopy (OS-SIM), like confocal microscopy, has about 200 nm spatial resolution. In this report, we performed quantitative 3-cube FRET imaging in OS-SIM mode and widefield microscopy (WF) mode, respectively, for living cells expressing FRET constructs consisting of Cerulean (C, donor) and Venus (V, acceptor). OS-SIM images exhibited higher resolution than WF images. Four spectral crosstalk coefficients measured under OS-SIM mode are consistent with those measured under WF mode. Similarly, the system calibration factors G and k measured under OS-SIM mode were consistent with those measured under WF mode. The measured FRET efficiency (E) values of C32V and C17V as well as C5V constructs, standard FRET plasmids, in living Hela cells were E C 32 V OSF = 0.32 ± 0.02 , E C 17 V OSF = 0.38 ± 0.02 , and E C 5 V OSF = 0.45 ± 0.03 , and the measured acceptor-to-donor concentration ratios ( R c ) were R C 32 V OSF = 1.07 ± 0.03 , R C 17 V OSF = 1.09 ± 0.03 , and R C 5 V OSF = 1.02 ± 0.04 , consistent with the reported values. Collectively, our data demonstrates that OS-SIM can be integrated into FRET microscopy to build an OS-SIM-FRET with confocal microscopy-like resolution.
Collapse
Affiliation(s)
- Zhi Liu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zewei Luo
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Hongce Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Ao Yin
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Han Sun
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zhengfei Zhuang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, China
| |
Collapse
|
8
|
Venkatramanan S, Ibar C, Irvine KD. TRIP6 is required for tension at adherens junctions. J Cell Sci 2021; 134:jcs247866. [PMID: 33558314 PMCID: PMC7970510 DOI: 10.1242/jcs.247866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Hippo signaling mediates influences of cytoskeletal tension on organ growth. TRIP6 and LIMD1 have each been identified as being required for tension-dependent inhibition of the Hippo pathway LATS kinases and their recruitment to adherens junctions, but the relationship between TRIP6 and LIMD1 was unknown. Using siRNA-mediated gene knockdown, we show that TRIP6 is required for LIMD1 localization to adherens junctions, whereas LIMD1 is not required for TRIP6 localization. TRIP6, but not LIMD1, is also required for the recruitment of vinculin and VASP to adherens junctions. Knockdown of TRIP6 or vinculin, but not of LIMD1, also influences the localization of myosin and F-actin. In TRIP6 knockdown cells, actin stress fibers are lost apically but increased basally, and there is a corresponding increase in the recruitment of vinculin and VASP to basal focal adhesions. Our observations identify a role for TRIP6 in organizing F-actin and maintaining tension at adherens junctions that could account for its influence on LIMD1 and LATS. They also suggest that focal adhesions and adherens junctions compete for key proteins needed to maintain attachments to contractile F-actin.
Collapse
Affiliation(s)
- Srividya Venkatramanan
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|