1
|
Mendoza G, Ortiz de Solorzano I, Pintre I, Garcia-Salinas S, Sebastian V, Andreu V, Gimeno M, Arruebo M. Near infrared dye-labelled polymeric micro- and nanomaterials: in vivo imaging and evaluation of their local persistence. NANOSCALE 2018; 10:2970-2982. [PMID: 29372230 DOI: 10.1039/c7nr07345c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of micro- and nanomaterials as carriers of therapeutic molecules can enhance the efficiency of treatments while avoiding side effects thanks to the development of controlled drug delivery systems. The binding of a dye to a drug or to a drug carrier has opened up a wide range of possibilities for an effective in vivo optical tracing of drug biodistribution by using non-invasive real-time technologies prior to their potential use as therapeutic vectors. Here, we describe the fluorescent tagging of polymeric micro- and nanomaterials based on poly(lactic-co-glycolic) acid and on the thermoresponsive poly(N-isopropylacrylamide) with the fluorescent probe IR-820 which was chemically modified for its covalent coupling to the materials. The chemical modification of the dye and the polymers yielded micro- and nanoparticulated labelled materials to be potentially used as drug depots of different therapeutic molecules. In vitro biological studies revealed their reduced cytotoxicity. A spatiotemporal in vivo micro- and nanoparticle tracking allowed the evaluation of the biodistribution of materials showing their local persistence and high biocompatibility after pathological studies. These results underline the suitability of these materials for the local, sustained, not harmful and/or on-demand drug delivery and the remarkable importance of evaluating the biodistribution of materials and tissue persistence for their use as local drug depots.
Collapse
Affiliation(s)
- Gracia Mendoza
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Cunha L, Szigeti K, Mathé D, Metello LF. The role of molecular imaging in modern drug development. Drug Discov Today 2014; 19:936-48. [PMID: 24434047 DOI: 10.1016/j.drudis.2014.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 11/30/2013] [Accepted: 01/07/2014] [Indexed: 12/28/2022]
Abstract
Drug development represents a highly complex, inefficient and costly process. Over the past decade, the widespread use of nuclear imaging, owing to its functional and molecular nature, has proven to be a determinant in improving the efficiency in selecting the candidate drugs that should either be abandoned or moved forward into clinical trials. This helps not only with the development of safer and effective drugs but also with the shortening of time-to-market. The modern concept and future trends concerning molecular imaging will assumedly be hybrid or multimodality imaging, including combinations between high sensitivity and functional (molecular) modalities with high spatial resolution and morphological techniques.
Collapse
Affiliation(s)
- Lídia Cunha
- Nuclear Medicine Department, High Institute for Allied Health Technologies, Polytechnic Institute of Porto (ESTSP.IPP), Vila Nova de Gaia 4400-330, Portugal
| | - Krisztián Szigeti
- Nanobiotechnology &In Vivo Imaging Center, Semmelweis University, Budapest H-1094, Hungary
| | - Domokos Mathé
- CROmed Ltd, H-1047 Budapest Baross u. 91-95, Budapest, Hungary
| | - Luís F Metello
- Nuclear Medicine Department, High Institute for Allied Health Technologies, Polytechnic Institute of Porto (ESTSP.IPP), Vila Nova de Gaia 4400-330, Portugal; IsoPor, SA, Porto, Portugal.
| |
Collapse
|
3
|
Patel B, Gauvin R, Absar S, Gupta V, Gupta N, Nahar K, Khademhosseini A, Ahsan F. Computational and bioengineered lungs as alternatives to whole animal, isolated organ, and cell-based lung models. Am J Physiol Lung Cell Mol Physiol 2012; 303:L733-47. [PMID: 22886505 DOI: 10.1152/ajplung.00076.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Development of lung models for testing a drug substance or delivery system has been an intensive area of research. However, a model that mimics physiological and anatomical features of human lungs is yet to be established. Although in vitro lung models, developed and fine-tuned over the past few decades, were instrumental for the development of many commercially available drugs, they are suboptimal in reproducing the physiological microenvironment and complex anatomy of human lungs. Similarly, intersubject variability and high costs have been major limitations of using animals in the development and discovery of drugs used in the treatment of respiratory disorders. To address the complexity and limitations associated with in vivo and in vitro models, attempts have been made to develop in silico and tissue-engineered lung models that allow incorporation of various mechanical and biological factors that are otherwise difficult to reproduce in conventional cell or organ-based systems. The in silico models utilize the information obtained from in vitro and in vivo models and apply computational algorithms to incorporate multiple physiological parameters that can affect drug deposition, distribution, and disposition upon administration via the lungs. Bioengineered lungs, on the other hand, exhibit significant promise due to recent advances in stem or progenitor cell technologies. However, bioengineered approaches have met with limited success in terms of development of various components of the human respiratory system. In this review, we summarize the approaches used and advancements made toward the development of in silico and tissue-engineered lung models and discuss potential challenges associated with the development and efficacy of these models.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Newman S, Fleming J. Challenges in assessing regional distribution of inhaled drug in the human lungs. Expert Opin Drug Deliv 2011; 8:841-55. [PMID: 21554149 DOI: 10.1517/17425247.2011.577063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Both the total amount of drug deposited in the lungs (whole lung deposition) and the amount deposited in different lung regions (regional lung deposition) are potentially important factors that determine the safety and efficacy of inhaled drugs. Radionuclide imaging is well established for quantifying the whole lung deposition of inhaled drugs, but the assessment of regional lung deposition is less straightforward, because of the complex nature of the lung anatomy. AREAS COVERED This review describes the challenges and problems associated with quantifying regional lung deposition by the two-dimensional (2D) radionuclide imaging method of gamma scintigraphy, and by the three-dimensional (3D) radionuclide imaging methods of single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). The advantages and disadvantages of each method for assessing regional lung deposition are discussed. EXPERT OPINION Owing to its 2D nature, gamma scintigraphy provides limited information about regional lung deposition. SPECT provides regional lung deposition data in three dimensions, but usually involves a (99m)Tc radiolabel. PET enables the regional lung deposition of radiolabeled drug molecules to be quantified in three dimensions, but poses the greatest logistical and technical difficulties. Despite their more challenging nature, 3D imaging methods should be considered as an alternative to gamma scintigraphy whenever the determination of regional lung deposition of pharmaceutical aerosols is a major study objective.
Collapse
|
5
|
Scheuch G, Bennett W, Borgström L, Clark A, Dalby R, Dolovich M, Fleming J, Gehr P, Gonda I, O'Callaghan C, Taylor G, Newman S. Deposition, imaging, and clearance: what remains to be done? J Aerosol Med Pulm Drug Deliv 2011; 23 Suppl 2:S39-57. [PMID: 21133799 DOI: 10.1089/jamp.2010.0839] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deposition and clearance studies are used during product development and in fundamental research. These studies mostly involve radionuclide imaging, but pharmacokinetic methods are also used to assess the amount of drug absorbed through the lungs, which is closely related to lung deposition. Radionuclide imaging may be two-dimensional (gamma scintigraphy or planar imaging), or three-dimensional (single photon emission computed tomography and positron emission tomography). In October 2009, a group of scientists met at the "Thousand Years of Pharmaceutical Aerosols" conference in Reykjavik, Iceland, to discuss future research in key areas of pulmonary drug delivery. This article reports the session on "Deposition, imaging and clearance." The objective was partly to review our current understanding, but more importantly to assess "what remains to be done?" A need to standardize methodology and provide a regulatory framework by which data from radionuclide imaging methods could be compared between centers and used in the drug approval process was recognized. There is also a requirement for novel radiolabeling methods that are more representative of production processes for dry powder inhalers and pressurized metered dose inhalers. A need was identified for studies to aid our understanding of the relationship between clinical effects and regional deposition patterns of inhaled drugs. A robust methodology to assess clearance from small conducting airways should be developed, as a potential biomarker for therapies in cystic fibrosis and other diseases. The mechanisms by which inhaled nanoparticles are removed from the lungs, and the factors on which their removal depends, require further investigation. Last, and by no means least, we need a better understanding of patient-related factors, including how to reduce the variability in pulmonary drug delivery, in order to improve the precision of deposition and clearance measurements.
Collapse
|
6
|
Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brûlet A, Miraux S, Thiaudière E, Tan S, Brisson A, Dupuis V, Sandre O, Lecommandoux S. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS NANO 2011; 5:1122-40. [PMID: 21218795 DOI: 10.1021/nn102762f] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hydrophobically modified maghemite (γ-Fe(2)O(3)) nanoparticles were encapsulated within the membrane of poly(trimethylene carbonate)-b-poly(l-glutamic acid) (PTMC-b-PGA) block copolymer vesicles using a nanoprecipitation process. This formation method gives simple access to highly magnetic nanoparticles (MNPs) (loaded up to 70 wt %) together with good control over the vesicles size (100-400 nm). The simultaneous loading of maghemite nanoparticles and doxorubicin was also achieved by nanoprecipitation. The deformation of the vesicle membrane under an applied magnetic field has been evidenced by small angle neutron scattering. These superparamagnetic hybrid self-assemblies display enhanced contrast properties that open potential applications for magnetic resonance imaging. They can also be guided in a magnetic field gradient. The feasibility of controlled drug release by radio frequency magnetic hyperthermia was demonstrated in the case of encapsulated doxorubicin molecules, showing the viability of the concept of magneto-chemotherapy. These magnetic polymersomes can be used as efficient multifunctional nanocarriers for combined therapy and imaging.
Collapse
Affiliation(s)
- Charles Sanson
- Université de Bordeaux/IPB, ENSCBP, 16 avenue Pey Berland, 33607 Pessac Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Berridge MS, Apana SM, Nagano KK, Berridge CE, Leisure GP, Boswell MV. Smoking produces rapid rise of [11C]nicotine in human brain. Psychopharmacology (Berl) 2010; 209:383-94. [PMID: 20232056 DOI: 10.1007/s00213-010-1809-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/17/2010] [Indexed: 11/29/2022]
Abstract
RATIONALE Variation in the rate at which drugs reach the brain influences many different drug effects and is also thought to influence liability to addiction. For example, rapid intravenous delivery of cocaine and nicotine is more effective in producing hedonic effects, tolerance, psychomotor sensitization, and in inducing gene expression. Smoking is thought to result in an especially rapid rate of rise of nicotine in the brain, but whether this is true has never been adequately addressed. Thus, in this study, we sought to determine the true rate of rise of smoked nicotine in human brain and compare this with previous intravenous nicotine delivery. METHODS Positron emission tomography scans of lung and brain regions and arterial and venous blood curves were obtained in human subjects after single puffs from cigarettes formulated with [(11)C]nicotine. RESULTS The rise of nicotine concentration following a single puff was rapid, reaching more than 50% of maximum brain levels within 15 s of bolus arrival in the brain in most subjects. This rate of rise was considerably faster than that seen in previous studies using intravenous administration. CONCLUSIONS Uptake in human brain from a single inhalation was sufficiently rapid that it is plausible that fast rate-of-rise contributes to nicotine dependence in smokers.
Collapse
Affiliation(s)
- Marc S Berridge
- 3D Imaging LLC, Cyclotron Suite Rm PS010, UAMS Radiology #556, 4301 W. Markham St., Little Rock, AR, 72205-7199, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Apana SM, Berridge MS. Cigarettes labeled with [ 11C]nicotine: formulation and administration for PET inhalation. J Labelled Comp Radiopharm 2009. [DOI: 10.1002/jlcr.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm 2006; 318:1-14. [PMID: 16621366 DOI: 10.1016/j.ijpharm.2006.03.012] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 10/24/2022]
Abstract
The vagina has been used as a mucosal drug delivery route for a long time. Its single characteristics can be either limitative or advantageous when drug delivery is considered. Gels are semi-solid, three-dimensional, polymeric matrices comprising small amounts of solid, dispersed in relatively large amounts of liquid, yet possessing more solid-like character. These systems have been used and are receiving a great deal of interest as vaginal drug delivery systems. Gels are versatile and have been used as delivery systems for microbicides, contraceptives, labour inducers, and other substances. Although somewhat neglected in clinical studies, pharmaceutical characterization of vaginal gels is an important step in order to optimize safety, efficacy and acceptability. Indeed, the simple formulation of a gel can lead to different performances of systems containing the same amount of active substances. Therefore, this paper discusses and summarizes current use and research of vaginal drug delivery systems based in gels.
Collapse
Affiliation(s)
- J das Neves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha, 164, 4050-030 Porto, Portugal.
| | | |
Collapse
|
10
|
Tigani B, Gremlich HU, Cannet C, Zurbruegg S, Quintana HK, Beckmann N. Near-infrared fluorescence imaging and histology confirm anomalous edematous signal distribution detected in the rat lung by MRI after allergen challenge. J Magn Reson Imaging 2005; 20:967-74. [PMID: 15558573 DOI: 10.1002/jmri.20203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To address the issue concerning the predominant location, on the left anatomic side, of edematous signals detected by magnetic resonance imaging (MRI) in the lungs of actively sensitized rats following intratracheal (IT) allergen challenge. MATERIALS AND METHODS Near-infrared fluorescence (NIRF) imaging was used to detect the lobular distribution in the lungs of normal rats of an IT instilled fluorescent dye, Cy5.5. Actively sensitized Brown Norway rats were examined by MRI 24 hours after IT administration of ovalbumin. The perivascular edema was quantified by histology in the different lobes of lungs removed from the same animals immediately after the MRI acquisitions. RESULTS An uneven distribution of Cy5.5 was found, predominantly on the left lobe, paralleling the localized development of allergic pulmonary inflammation in the left lobe detected as edematous signal by MRI and confirmed by histology. The patterns of the distributions of the dye between and within the lobes were very similar to those of perivascular edema assessed histologically. CONCLUSION The data indicate a relationship between the molecular deposition of the dye detected by NIRF in the lungs and the distribution of allergen eliciting the development of pulmonary inflammation in actively rats. The combination of MRI with NIRF imaging may provide important information in preclinical pharmacologic research in the area of airway diseases. While MRI is able to address the effects of compounds on the inflammatory response in models of airways diseases, NIRF imaging may provide important insights on drug distribution and interaction in the lung, being thus suited for molecular imaging studies.
Collapse
Affiliation(s)
- Bruno Tigani
- Novartis Institutes for BioMedical Research, Discovery Technologies, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Brunner M, Langer O, Dobrozemsky G, Müller U, Zeitlinger M, Mitterhauser M, Wadsak W, Dudczak R, Kletter K, Müller M. [18F]Ciprofloxacin, a new positron emission tomography tracer for noninvasive assessment of the tissue distribution and pharmacokinetics of ciprofloxacin in humans. Antimicrob Agents Chemother 2004; 48:3850-7. [PMID: 15388445 PMCID: PMC521875 DOI: 10.1128/aac.48.10.3850-3857.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biodistribution and pharmacokinetics of the fluorine-18-labeled fluoroquinolone antibiotic [(18)F]ciprofloxacin in tissue were studied noninvasively in humans by means of positron emission tomography (PET). Special attention was paid to characterizing the distribution of [(18)F]ciprofloxacin to select target tissues. Healthy volunteers (n = 12) were orally pretreated for 5 days with therapeutic doses of unlabeled ciprofloxacin. On day 6, subjects received a tracer dose (mean injected amount, 700 +/- 55 MBq, which contained about 0.6 mg of unlabeled ciprofloxacin) of [(18)F]ciprofloxacin as an intravenous bolus. Thereafter, PET imaging and venous blood sampling were initiated. Time-radioactivity curves were measured for liver, kidney, lung, heart, spleen, skeletal muscle, and brain tissues for up to 6 h after radiotracer administration. The first application of [(18)F]ciprofloxacin in humans has demonstrated the safety and utility of the newly developed radiotracer for pharmacokinetic PET imaging of the tissue ciprofloxacin distribution. Two different tissue compartments of radiotracer distribution could be identified. The first compartment including the kidney, heart, and spleen, from which the radiotracer was washed out relatively quickly (half-lives [t(1/2)s], 68, 57, and 106 min, respectively). The second compartment comprised liver, muscle, and lung tissue, which displayed prolonged radiotracer retention (t(1/2), >130 min). The highest concentrations of radioactivity were measured in the liver and kidney, the main organs of excretion (standardized uptake values [SUVs], 4.9 +/- 1.0 and 9.9 +/- 4.4, respectively). The brain radioactivity concentrations were very low (<1 kBq. g(-1)) and could therefore not be quantified. Transformation of SUVs into absolute concentrations (in micrograms per milliliter) allowed us to relate the concentrations at the target site to the susceptibilities of bacterial pathogens. In this way, the frequent use of ciprofloxacin for the treatment of a variety of infections could be corroborated.
Collapse
Affiliation(s)
- Martin Brunner
- Department of Clinical Pharmacology, Division of Clinical Pharmacokinetics, Medical University of Vienna, Allgemeines Krankenhaus, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|